
Object Oriented Programming and Program Correctness:
The Students’ Perspective

Ioanna Stamouli
Department of Computer Science

University of Dublin
Trinity College

O’Reilly Institute, Dublin 2,
 Ireland

stamouli@cs.tcd.ie

Meriel Huggard
Department of Computer Science

University of Dublin
Trinity College

O’Reilly Institute, Dublin 2,
Ireland

huggardm@cs.tcd.ie

ABSTRACT
Many Computer Science and Engineering curricula contain
core modules on computer programming and programming
languages. An increasing number of institutions choose to
introduce undergraduates to programming through object
oriented languages. As part of a longitudinal
phenomenographic study we have set out to investigate the
understanding of programming concepts that first year
undergraduate students have when learning to program and
think in the object oriented paradigm.
The conceptions that students have developed on what
learning to program really means and their perception of
program correctness are explored; providing an insight into
the levels of abstraction and complexity of the learners’
understanding. Our findings suggest that the way students
experience learning to program is related to their
perception of what constitutes program correctness.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming,
and K.3.2 [Computers and Education]: Computer and Information
Science Education.

General Terms
Human Factors, Languages.

Keywords
Phenomenography, Object oriented programming, learning to
program, program correctness.

1. INTRODUCTION
Programming concepts and languages are fundamental for
the study of Computer Science and it is critical that first

year undergraduate students acquire the essential skills in
these areas as quickly as possible. However, it is evident
that many students find it difficult to acquire these skills
and this has a negative impact on their performance
throughout their undergraduate career [5]. In order to
improve the quality of teaching and, therefore, the learning
experience of undergraduate Computer Science students, it
is essential to understand, how they experience learning to
program and its associated aspects and features.
Based on these initial observations, we have undertaken a
longitudinal study aimed at exploring the main conceptions
undergraduate students have of the most fundamental
principles of object oriented programming. In this paper we
discuss a subset of our findings, examining the
conceptions that novice programmers have of learning to
program and their perception of program correctness within
the object oriented paradigm. The data used to explore
these themes is a series of interviews with sixteen first year
undergraduate students. These were analysed following the
phenomenographic research paradigm. This reveals the
qualitatively different ways in which a phenomenon can be
experienced, understood or perceived by a student cohort
[8], and hence it is optimal for this study.
Analysis reveals the conceptions that students have
developed of what learning to program really means, along
with their perception of program correctness. Together,
these results provide an insight into the levels of
abstraction and complexity of their understanding. Our
findings suggest that the way students experience learning
to program is related to their perception of what constitutes
a correct program.
In the remainder of this paper we present the details of the
study and the chosen research methodology. In sections 3
and 4 the results are presented together with supporting
excerpts from the interviews. The results are then discussed
in section 5 where the relationships between the concepts
and the implications of the findings are explored. We
conclude section 6 by indicating possible directions for
future research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICER’06, September 9–10, 2006, Canterbury, United Kingdom.
Copyright 2006 ACM 1-59593-494-4/06/0009...$5.00.

109

2. THE STUDY
The study was performed in the University of Dublin,
Trinity College, over the course of an entire academic year.
Sixteen first year undergraduate students were selected to
participate in the study, drawn from the Introduction to
Object Oriented Programming course that is part of the
syllabus of the Computer Science degree. The
programming language used to introduce the students to
programming is Java.
In the following we present the reasons behind the
selection of this course and student cohort. A brief
overview of the research approach and the means used to
collect the data in this project is also provided

2.1 Phenomenographic research
Phenomenographic research is strongly empirical in its
essence. The first goal of a phenomenographic project is to
describe the experience of learning something [2]. The
particular object of the study constitutes the phenomenon
under investigation; in this case learning object oriented
programming and its specific concepts. The focus of a
phenomenographic study is to describe the variations in the
ways a phenomenon is experienced and understood within
the population under investigation.
The results of such a study are presented as descriptive
categories. Each category characterises a particular way of
experiencing the phenomenon, capturing key aspects of the
essential differences between the categories. The categories
are usually presented in a hierarchical manner, since some
describe a more advanced or complex understanding than
others [1]. The variations between the categories present
the critical points in understanding and are highlighted in
the analysis.
The main method for gathering data when employing the
phenomenographic approach is interviews. These are
usually semi-structured in order to allow for flexibility in
following interesting themes that may arise during the
course of a session. The interviews are transcribed
verbatim and analysed in detail. During the analysis the
researcher is required to be open to alternative views of
concepts. The material is analysed both as a whole, in the
context of the interview, and also as individual statements,
in the context of particular themes [1, 8]. This highly
iterative process results in categories of description that
capture the main conceptions by which the phenomenon is
understood.

2.2 Selecting the Course and the Students
The focus of the project is on novice programmers’
understanding of the concepts involved in object oriented
programming. Thus the population most suited for the
study is highly motivated Computer Science students.

The course starts as an introduction to object oriented
programming using Java. Students require no prior
knowledge of programming, or computing in general, in
order to follow and complete the course.
Half of the course population participated in the study,
which required their involvement in 4 paid hours of
interviews distributed throughout the academic year. The
students were selected based on a background
questionnaire that was distributed at the beginning of the
year. The criteria used for the selection of the students
aimed to capture variations in prior programming
experience, motivation for choosing the degree and
previous academic performance.

2.3 Interviews
Although a series of four interviews was conducted with
each student, the topics explored in this paper were
discussed in the last two interviews. These were held
during the second half of the course, towards the end of the
academic year. The interviews were semi-structured;
therefore some questions were prepared beforehand in
order to provide an outline of the topics to be discussed
during the session. The main questions that were used to
investigate unveil the students’ conceptions of learning to
program were “what do you think learning to program is
all about?” and “what do you think it takes to learn how to
program?”. As regards exploring students’ understanding
of program correctness the questions that were used were
“when do you think a program is correct?”, and “what is
your idea of a correct program?”.

3. LEARNING TO PROGRAM
While learning to program is a theme that has been
investigated in previous studies [3, 4, 6], these have been in
educational disciplines rather than pure Computer Science.
In this study we identified six distinct, and in some cases
inclusive, ways of experiencing learning to program. These
are presented in Table 1.
The first three categories focus on the programming
language and its constructs; while the next two bring out
the unique way of thinking that is required when
programming. The last category describes how learning to
program involves the acquisition of a new skill that can be
utilised in everyday life. A more elaborate presentation of
the categories follows, along with supporting excerpts from
the interviews.

110

Category Label Category Description
Learning the
syntax of the
language

Learning to program is experienced as
learning the syntax of the language.

Learning and
understanding the
programming
constructs

Apart from learning the syntax of the
language, the focus here also includes
learning and understanding the
constructs involved in programming in
general.

Learning to write
programs

As above, but also utilising all these to
write programs by having a structure
in them.

Learning a way
of thinking

In addition to the above, learning to
program is also experienced as
learning how to think logically in
general.

Learning to
"Problem Solve"

As above, and also utilising this way
of thinking to solve programming
problems.

Acquiring a new
skill

The whole process is experience as
learning a new skill that affects the
way one thinks in real life.

Table 1. Categories of description for learning to
program.

3.1 Category 1: Learning the syntax of the
language
Students in this category experienced learning to program
as learning the syntax of the language. The students that
belong to this category seem to direct their efforts towards
learning the keywords and the details of the syntax, in
some cases even by heart. Knowing the details of the
programming language provides the student with the ability
to write a piece of code that compiles without any
syntactical errors and this is what they experienced learning
to program to be.
As Alan emphasises in his response, the important factor is
knowing how to fix small, syntactical errors that may
occur.

Alan3: Oh yeah, the syntax, you know, learning to fix
the small errors that you would... you know, you have
the basic knowledge but then you still need to refine it...
you know, you may put the wrong brackets at some
point and you may not know the equals method to
compare the two strings, you know, stuff like that.

In his response to the questions, Alan refers to the basic
knowledge one has about programming, but the main focus
of his experience is on learning the grammar details of the
language. Another student, Liam, points out that the only
thing you need to do to in order to learn how to program is

to get a book from which one can learn the syntax and
features of the language.

Liam3: It’s about getting a couple of books, really...
Well it is the language that you are interested in anyway
and the syntax of the language is what you learn from
the book. Then you have to mess around with the syntax
and the features of the language and having fun you
learn more, really […]. So what you can do depends
really on the language and this is, really, what you learn
from a book, the syntax of the language, that’s all you
need anyway.

Here we get the perceptions of a complete novice (Alan)
and a relative experienced programmer (Liam) where the
focus of their experience of learning to program is
primarily on learning the syntax of the language,
independent of their prior programming experience.
This first, basic category of what learning programming is
about, has been also identified in other studies [3, 4, 6].

3.2 Category 2: Learning and understanding
the programming constructs
Students in this category are focused on the process of
learning and understanding the constructs involved in
programming in general and, thus, follows directly from
the first category. The understanding expressed in category
1 is presumed, however the learner views the syntactical
details to be in the background of their experience. The
dominant feature of this category is understanding the
essence of the programming constructs. Neil expresses this
conception strongly:

Neil3: [...] you need to know the syntax of the language
that you are programming in and the concepts like
iterations and conditions. But all these… you kind of
need to know how to use them, like, and when to use
them... The syntax of these things is also important but
you need to understand the concepts first not in a single
language, like, because they kind of exist for most of
the programming languages.

Neil is very clearly distinguishing between the syntactical
details of the language and the programming concepts such
as iterations, conditions, etc. Stephan also talks about the
techniques you need to learn when programming. When
asked what it takes for someone to learn how to program,
he replied:

Stephan3: It takes… A good deal of work actually.
I: Work on what?
Stephan3: On studying concepts… programming
concepts and the languages.
I: When you say concepts what exactly do you mean?

111

Stephan3: Well, basically, techniques, the basic
understanding of how to make a computer do something
and then the language is something that you learn in
order to translate that to something that the machine can
understand, but you have to understand first how the
concepts work so you can use them when you need to
the right way. You know...

This category of description was also found amongst the
sample population in study [4].

3.3 Category 3: Learning to write programs
In this category the focus moves from the syntax and the
programming constructs to the actual writing of programs.
Thus learning to program is experienced more as utilising
the syntax and the features of the language to write
programs that solve the problem at hand. Although the
focus is clearly on the programs; the nature of the programs
is not specified. Anthony exhibits this conception in the
following answer:

I: What do you think it takes to learn how to program?
Anthony3: It involves setting out your ideas after
thinking how to, like, put these ideas into the proper
syntax and you need to know the commands in
whatever language you are working in and then writing
out the program. That’s about it really.

Anthony’s conceptions include the understanding presented
in categories 1 and 2, however the emphasis is on how one
should use all these to write programs.
Sean points out the importance of learning from other
programming examples:

Sean: Ehm... first of all the basics of how the language
works and what is the grammar that it uses... and then
just various different examples, just to get used to how
it is being used really. That is the only way to learn it
really properly by writing and writing... small programs
at the start and then bigger as you get to know more.
You need lots of experience.

Booth [2] also identified this category in her investigation
of learning to program.

3.4 Category 4: Learning a way of thinking
In this category the perception has progressed from the
language and programs to learning a new "way of
thinking". Many students expressed that, when
programming, one needs to be in a different frame of mind
than that needed for other courses. Hence, in order to be
able to program one needs to learn to think in this new
way. This frame of mind has been vaguely described as
logical thinking by the students in this study. Patrick
explains this it in the following way:

I: What do you believe is required, or what does it take
to learn how to program?

Patrick3:You definitely need the sense of logic, that is
the basic thing because everything else then is based in
your ability to logically think of a solution, even with
some of the other programs that we are doing you need
the logic to be able to see it. Basically, you need decent
mathematics and a basic sense of logic and the practice,
of course. Pay attention and then it clicks, I guess.

Patrick here links the process of learning how to program
with learning mathematics. This may have been influenced
by the fact that the students in the labs and tutorials were
given programming examples and problems based on
mathematics. One thing is clear though: this category
reveals that programming requires the learner to be in a
different frame of mind where logic is central. Patrick
mentions something else as well in his response, this
“click” moment that many students talked about in our
informal conversations during the course. This moment is
described as something that one cannot control and when it
happens, programming starts to make sense and the learner
is able to program as if all the knowledge has fallen into the
right place. A similar conception to this has been
documented in [6].

3.5 Category 5: Learning to “Problem Solve”
This category derives from the previous one in that the
concept of logical thinking is now expressed as a condition
for problem solving. This more complete conception
involves learning to problem solve as part of the experience
of learning to program. Being able to see the solution to a
problem is a critical feature of this category. The
importance of problem solving is highlighted by the
teaching staff from the very beginning of the course and
the students have been taught to perform case analysis
when attempting to solve a problem. This involves finding
all the different cases that may arise in the solution to a
problem and the conditions that affect them. Usually,
students are encouraged to write down the conditions in
English and use this as a guide when writing the code for
their solution. This has possibly affected the number of
students who belong to this category. For example,
Eamonn describes this in the following quotation:

Eamonn3: [...] Ehm logic, how to think logically and...
breaking the whole thing down. Like in the tutorial the
demonstrator told me that you need to break the whole
thing down and then you work what you need to have
and how you go about it [case analysis], and then the
whole thing made a lot more sense. It is just ... you only
understand by being shown things... the book is good so
then you only have to learn it [the syntax] off […] Let
just say... I am actually coming from the... actual point
that Java code doesn't matter that much, like I haven't
learnt it. Like I can do it with a book along side I am not
confused anymore. But the important thing is to think is

112

this way so you see the solution... Do you know what I
mean?

Unlike Eamonn, Brian does not explain how he learnt to
solve programming problems; rather he focuses on the
characteristics that a good solution should have.

Brian3: I think it’s more trying not to look at it as one as
more like not just as the problem, but more as to how
you are going to deal with the problem. There is a lot of
ways probably... an infinite number of ways that you
can do any one problem. It’s just trying to do it the
smartest and quickest way really… not the quickest
way, the best, the more efficient way.

Declan points out the difference between problem solving
in programming and problem solving in other situations:

Declan: Hmm logic and just kind of… hem… it has to
be clear in your mind what you have to do, if you know
what I mean, like,[…] there is always going to be
certain cases when you have to solve a problem and you
just have to know what rules you have to follow and
what kind of things you have to do to solve it. […]
because you can solve problems without having to think
so much about it, where in computer programming
solving a problem is more complicated because the
instructions are so basic you have to go down and solve
the problem into its very basic elements, like, think… a
lot of the problem and its solution. Because when you
are thinking of a problem solution in your mind you
take a lot of things for granted but it is not this way in
programming, because you have to think more basic.

The focus in this category is on problem solving, and the
students have described how one can learn this technique.
This category reveals a more developed conception of
learning to program that has extended beyond the previous
categories to include the problem as well as the ways one
can approach its solution. The logical way of thinking that
was described in category 4 is now used to enable problem
solving. This is a similar finding to that presented in [6].

3.6 Category 6: Acquiring a new skill
The final category conceptualises learning to program as
learning a new skill that affects the way one thinks in real
life. This conception assumes understanding of the
language and the programming constructs while it draws
on elements from categories 4 and 5. However, the way
that thinking logically enables problem solving is now
viewed from a different perspective that extends beyond
the course to the real world. Students experience learning
to program as the acquisition of a new skill that can be
useful in other areas of their studies, such as learning other
programming languages, or even in different areas, like
mathematics. Colin voices this understanding in the
following:

I: Have you learned anything else to reach that point in
programming ability that you have now?
Colin3: Well I didn’t have to carry out anything very
difficult so far but, yeah, you learn how to break down
things to more manageable pieces which would be
applicable… to any programming languages and any
mathematical operations or anything really.

In a different interview session when students were asked
what they thought was the most important thing they
learned during the course, Ken and Cormac said the
following:

Ken4: [...] sort of you work out how to analyse problems
and you realise that maybe there are ways of doing
something, that you haven't thought of before and you
can apply that to other things like in assembly.

He then continues by giving a mathematical example where
the logical thinking he learned in the programming class
helped him solve in his mathematics class. Ken has
explained how his new skills helped him in other courses
while Cormac moves even further:

Cormac4: Yeah I did (learn) definitely logic and
problem solving etc. and it helps in many other ways
like cleaning the flat (laughs)
I: How was that?
Cormac4: (giggles) I mean the first time we tried to
clean it everyone was trying to do the same thing, but
the next time we said, you do this and then you do the
other, and everything happened very fast and very
structured.

Cormac argues that learning to program has affected the
way he behaves and accomplishes tasks in real life
situations, like when he is cleaning his flat. This conception
removes the experience of learning to program from the
strict boundaries of the course and university, and makes it
part of the learner’s everyday world.

4. UNDERSTANDING OF PROGRAM
CORRECTNESS
An understanding of correctness is an important aspect of
the experience of learning to program since it affects the
approach a learner adopts. This theme was taken up in the
last interview session. This took place after the students
had received feedback on almost all their assignments and
laboratory work and at a point where their understanding of
programming was reaching a more mature stage. Students’
understanding of program correctness has been known to
differ from professional or academic standards [7] and this
is evident in our categories.

113

Category Label Category Description

Syntactical correctness

A program is perceived to be
correct when it is syntactically
right, that is when it compiles
without any errors.

Functional correctness

Apart from being syntactically
correct the program needs to
fulfil the requirements of the
problem specification.

Design correctness

In addition to the above, the
program should be correctly
structured in order to enable
extensibility.

I/O validation and
performance
correctness

As above and, also, the program
should cater for invalid input and
it should also be optimised in
terms of code length and how
fast it executes.

Table 2. Categories of description for understanding of
program correctness.

Four qualitatively different ways of experiencing
“correctness of a program” have been identified: the first
two categories focus more on the problem and the code
correctness of the program while the last two are more
developed, since they incorporate non-functional elements
that aim to assist the actual user of the program. The
categories are summarised in Table 2 and these are further
analysed in the sections that follow.

4.1 Category 1: Syntactical correctness
In this category a program is experienced to be correct
when it is free of any syntactical errors, in other words
when it runs. The student focus in this category is solely on
the code. Neither the problem requirements nor the human
aspect of programming are involved in this perception. The
experience is narrowed down to the relationship between
the code and the programmer, as Liam explains in the
following:

I: When do you think a program is correct?
Liam4: When it had no bugs.
I: Anything else?
Liam4: No, not really, as long as it runs, it’s right.

Alan, in the next quote, elaborates a bit more by saying that
a program should use all the methods and classes that he
has previously defined. However the focus of correctness
remains the syntactical correctness of the program itself.

Alan4: When it works and the application runs and calls
all the methods in the class and everything is fine and
no errors. […] I find that doing it on paper first is easier
for me.

The understanding of when a program is correct in this
category is restricted to the code and the language that is
used. The student is satisfied with the correctness of the
program when it runs, independent of the functionality of
the program. Fortunately, not many students within the
participating population shared this view.

4.2 Category 2: Functional correctness
This category of description expresses an understanding of
program correctness where the problem requirements are
the focus. The understanding that was expressed in the
previous category is still present; however the central point
of the experience has expanded beyond the code to include
the problem definition and the requirements of the
application.
As Patrick explains in the following statement, program
correctness is about satisfying the requirements of the
problem:

Patrick4: I suppose when it satisfies all the things in the
question and when it compiles successfully or when the
red lines disappear from Eclipse [laughs]. I suppose it is
right when it does what you want it to do.

Another opinion is expressed by Stephan in his final
interview:

Stephan4: Well I suppose that the way I look at
correctness is a bit different than what the lecturer
believes. He thinks that a program is correct only if it
follows the object oriented way while I think that a
program is correct when it does what it has to do. Also
the source code has to look correct and readable.

The lecturer has being emphasising the importance of
following object oriented design principles when
developing an application. However Stephan, who has
prior programming experience with procedural languages,
cannot see the point in object oriented design as long as the
necessary functionality is implemented; design is not
considered to be part of a program’s correctness here.
Students in this category experience program correctness as
being related to the code being error free but the primary
focus is on the problem definition rather than the code per
se.

4.3 Category 3: Design correctness
In this case learners experience program design as the
principal criterion for correctness; affecting the
extensibility and readability of the program. Therefore,
apart from all the other properties that should be present in
a solution, the right structure of the program is a key issue.
Eamonn explains this as follows:

I: I mean let’s take for example your poker program,
which were your criteria of correctness?

114

Eamonn4: I felt it was correct when it runs, did what it
was supposed to do and it is structured properly. [...] I
feel design is part of correctness. It is easier and better
when it is correctly structured, because people can
understand it... and because then you can go back and
extend and reuse what you had there. So appropriate
design is really important and it adds to the solution.

Brian explains how his perception of when a program is
correct has changed after the exam.

Brian4: I used to just say when it does what is supposed
to do but it was... Karl, when we had that sort of half
exam just before Easter and it [his program] was right I
mean what he wrote was right but it was missing
something small and for that he got I think 10 out of 40
or something, so it is kind of like... it kind of has to be
functional as well it has to be open and object oriented
and it has to be sort of modular [he writes down again]
because he had it all in big blob of code. So it is right if
it is like... I don't like to think that... if the final result is
right so the whole thing is right. It is how you got there,
how you designed the thing to get there as opposed to
correctness as such.

Brian says that he previously believed that program
correctness was all about the functional elements of the
program, but as his friend had marks deducted from his
exam paper because his design was inappropriate he
changed his mind. Brian's focus in his answer is clearly on
design and this view is unlike the previous categories. In
the last sentence of his response Brian makes a distinction
between the end product correctness and the process that
one follows to achieve that. Thus, from his point of view
what is important is the techniques used to develop a
solution and that this is what constitutes the program’s
correctness. Declan is thinking along the same lines in his
response:

Declan4: Well, if it works firstly and then the way the
code is written and structured because sometimes code
can look terrible, I mean really horrible, like if you got
like i+= 1 don't like it because it is very hard to read.
Just, generally on how easy the code is to read and so
on...

Although all of the students quoted above experience
design to be an important part of correctness, their
motivation is very different. Eamonn stresses the
importance of design because that makes the solution easier
to extend, Brian is concentrated on achieving good grades
and separates syntactical and design correctness, while
Declan points out that the right structure improves
readability and therefore makes the program correct. These
students share the same perception of program correctness,
however they approach it from very diverse and different
angles.

4.4 Category 4: I/O validation and
performance correctness
In this category the perspective is broadened even more to
include non-functional requirements as part of the
experience:

Anthony4: When it fulfils the functions that it supposed
to do... without any side effects, it might be able to fulfil
all the tasks but it should be responding in cases where
the user enters something invalid.
I: You mean checking for the validity of the user input?
Anthony4: Yeah.

Anthony here emphasises the importance of input
validation and he experiences this as being part of a correct
program. Thus, apart from the functionality that should be
implemented, the learner considers non-functional elements
such as error checking to be necessary when a solution is
developed. Even though the focus is still on the problem
requirements, there is more to correctness than just the
basic functionality. Colin expresses this more strongly:

Colin4: A program is correct when it does what you
want it to do first of all, so you give it the values you
want it to use and then it just works. It works also when
it is user proof so if you use the wrong values then you
cannot crash it, you cannot pass values that would make
it not work. You have to be able to respond properly
when you don't give exactly what it wants. It should be
able to distinguish among what is valid and what is not.
It should also be what is the word... optimised. It has to
be as short as possible to do it and it should also take up
less memory and it should run faster.
I: Did you came up with this by yourself, or you read
that somewhere?
Colin4: Oh, by myself, from my experience.

Colin’s understanding of correctness takes into account the
behaviour that a program should have when it is executed.
From his point of view the responses a program provides to
the user should be meaningful. Hence, in order for a
program to be correct, input and output validation is
necessary. Colin also emphasises other non-functional
properties such as code length and memory efficiency.
Kevin emphasises the importance of providing clear
guidelines regarding the user input and program usage:

Kevin4: When you run it and it does everything you
kind of ask from it to do, say it looks for user errors, so
if you ask for yes or no and you expect the user to type
‘y’ or ‘n’ then if the user types something else this
would not crash the program, like, it will deal with that
correctly. So sort of input and error checking is
important as well.

115

Mark thinks along the same lines in his response:
Mark4: When it does what it is supposed to do without
errors I suppose hmm… Caters for any error that might
occur any problems like… yeah problems that might
arise form the user doing something that he is not
supposed to rather than crashing and it is supposed to
do whatever you expect it to do rather than something
that you either don't need or don't want. It is correct
when it solves the problem and prevents other problems
from occurring.

All the above quotes reveal an understanding of correctness
that incorporates the previous categories but focuses mostly
on I/O validation and other non-functional properties such
as optimisation and efficiency. The focus of the students’
experience has expanded to involve the user as well, since
the importance of validating input and output in this
category aims to assist the user in using and acquiring a
better understanding of the application.

5. DISCUSSION
In this section the structural aspects of the categories of
description for the two themes (Learning to program and
the understanding of program correctness) are discussed
and the relationship between them is examined.

5.1 Findings on Learning to program
The qualitatively different ways that students experience
learning to program when they are first introduced to it, are
presented in Table 1. The six categories that have been
identified within the study’s population are clearly distinct
and inclusive, in the sense that each one assumes the
conception(s) formulated in the preceding categories. Thus,
the earlier categories express a relatively basic
understanding and, as we progress through the categories,
the experience becomes richer and the view broadens and
matures.
The first three categories, learning the syntax of the
language, learning and understanding the programming
constructs and learning to write programs reveal an
understanding that is more strongly oriented towards the
technicalities of the process of learning to program.
However the focus of each category is different. The
experience in the first category is solely limited to the
student learning the syntactical details of the underlying
programming language. In category 2, the conception has
evolved to a more abstract understanding of programming
constructs and the experience broadens further in the third
category where the focus is on the way all of the previous
categories enable the creation of programs. The existence
of these particular conceptions is not surprising as they fit,
more or less, within the structure and development of the
course. In particular, the study of programming focuses on
each of the elements present within the first three
categories at different stages of the course presentation.

However, since the interviews that discuss this theme were
held during the latter stages of the course it was hoped that
the students would have moved from this limited
conception to a more mature experience, such as the ones
described in the next three categories.
The next two categories, learning a new way of thinking
and learning to ‘Problem Solve’, encompass a view that is
not intrinsic to the course content or structure. In category
4, this way of thinking is expressed as logical thinking.
Students that belong to this category have realised that
there is something more to learning to program and that it
is about learning a systematic or logical way of thinking.
Hence, the students felt that this is what one should learn,
and concentrate on, when learning to program. However,
the conception described in category 4 is not complete,
since this ‘way of thinking’ is not clearly understood and
the students refer to a “click” moment, where all prior
knowledge falls in place. In the penultimate category the
conception has become clear: learning to program is
experienced as learning to solve problems using
programming constructs and techniques. The conception
has moved from the detail of the programming language to
a more abstract understanding that is centred on the actual
problem. Although this view was not explicitly part of the
course, it was encouraged and fostered throughout the
course, especially when programming tasks were assigned
to the students.
In the final category learning to program is viewed as
acquiring a new skill. This conception presupposes the
aspects discussed in the previous categories and
concentrates instead on something external to the
components of programming. This complex conception
views the process of learning to program as learning a new
skill that is not only required when programming and
solving problems but one that changes the way a person
thinks and acts in life. This structured and logical way of
thinking, which was initially outlined in category 5, is now
put in the context of the learner’s everyday life. Those in
this category have discerned the skills that are inherent in
learning to program and are now using them in other
courses or activities, such as in solving mathematical
problems, learning other programming languages or
everyday activities that require a structured way of
thinking.

5.2 Findings on Understanding of Program
Correctness
Four distinct categories of description were identified in
the conception of program correctness theme. The
students were asked what constitutes program correctness
within the context of the course rather than in general.
Thus the qualitative categories of description were
formulated with this in mind. The first two, syntactical
and functional correctness reveal a conception that is

116

focused on the more tangible elements of the theme.
Category 1 “A program is perceived to be correct when it
is syntactically right, that is when it compiles without any
errors” describes a conception where the central focus is
the programming language. Students that share this
viewpoint have difficulty understanding programming
and in many cases remain puzzled when they do not
achieve the grades they expected.
Functional correctness was a popular category among this
study’s population. The fulfilment of the problem
requirements is the focal point of this conception. Even
though this is a straightforward and very logical
conception, students that experience program correctness
in this way often fail to achieve their potential in a course
such as the one under investigation. When learning object
oriented programming, an essential goal of the course is
for the students to learn to write and think according to
the object oriented paradigm. Not taking object
orientation into account results in incorrect or incomplete
solutions. From the analysis of the interview data, it
appears that students with previous experience of
procedural programming languages failed to see the
importance of the object oriented paradigm.
The next category presupposes the understanding
expressed in the previous two conceptions and instead
focuses on the design of a program. Students that share
this view do not merely try to fulfil the requirements of a
given problem, but try to follow object oriented
techniques and develop an extensible and more reliable
solution. This conception reveals a richer understanding
of what constitutes a correct program. This is clearly
differentiated from the previous category and has been
placed in a more realistic paradigm where programs can
be reused or further extended.
Finally the category labelled “I/O validation and
performance correctness”, focuses mostly on the
interaction between the program and the user. The learner
has moved beyond the tangible elements of correctness and
is now concerned with the performance aspects of the
program. The actual user is central to this conception and
this enables the students to experience a correct program as
something that solves real world problems and therefore
should be designed to interact appropriately.

5.3 Relationship between the Themes
Our findings suggest that the way students experience
learning to program is related to their perception of what
constitutes a correct program. Students whose experience
falls into the first four categories of description for what it
means learning to program (Cat. 1: Learning the syntax of
the language, Cat2: Learning and understanding the
programming constructs, Cat. 3: Learning to write
programs, Cat. 4: Learning a way of thinking), experience
program correctness as either syntactical or functional.

Although a one-to-one relationship was not established
between the two themes: from the 9 students that fell into
the first four categories of the first theme, all, except one,
viewed program correctness as syntactical or functional.
Thus, the way one experiences learning to program
influences how one understands the outcome of that
process, which i.e. the program itself. In the first four
conceptions of the learning to program theme, the
experience is confined to the programming language and
the programs. Similarly, for the program correctness theme,
the first two categories focus on the language and the
problem at hand, rather than taking the bigger picture into
account.
For categories 5 and 6, (Learning to ‘Problem Solve’, and
Acquiring a new skill) a one-to-one relationship is observed
with design and I/O validation and performance
correctness. The distribution is that from the 7 students that
belong to the aforementioned conceptions, 3 experienced
program correctness as design correctness while 4
experienced programming as I/O validation and
performance respectively. Thus, when the focus of learning
to program is on the structured way of thinking that enables
problem solving, the primary criterion for program
correctness is the object oriented structure and extendibility
of the solution. Finally, when learning to program is
conceptualised as the process of acquiring a new skill that
can be used in real life; the understanding of program
correctness is focused on the interaction between the user
and the program, taking into account non-functional
elements such as optimisation of the code and performance
of the program as a whole. Hence, the results suggest that
there is a clear linear relation between the two themes
discussed in the paper.
Although, the study’s sample population is not sufficiently
large to draw final conclusions on the relations observed, it
is sufficiently representative to indicate the existence of this
trend. The results suggest that students develop a general
view about learning programming and the programming
constructs and that this then influences their experience
throughout the course and even, maybe, their
undergraduate career.
The findings also show that more than half of the
population of the study does not develop a complete and
mature understanding of learning to program such as the
ones described in categories 5 and 6. A similar relationship
holds for the understanding of program correctness. The
interviews were held almost at the end of the academic
year, so there were some students who completed the
programming course and who still believed that learning to
program in the object oriented paradigm is purely about
learning the syntax of the language and that a program is
correct when it is free from syntactical errors.
Undoubtedly the desired course outcome is for students to
develop a deep understanding of programming and the

117

programming constructs, enhancing their experience and
putting the knowledge into context. The question however
is how educators can achieve this. Our findings suggest that
there is a linear relation between the two themes, which
begs the question: does this hold true for the students
understanding of other object oriented constructs such as
objects and classes? It would also be beneficial to know if
by positively influencing one theme (such as the students’
perceived criteria for program correctness), does this have a
concomitant impact on the students’ experience, and
attitude, towards programming? These are questions that
our ongoing research aims to explore.

6. CONCLUSION
This paper investigated the understanding first year
undergraduate Computer Science students have of what it
means to learn how to program within the object oriented
paradigm. It also explored the students’ understanding of
what constitutes a correct program. Analysis of the data
suggests that more than half of the sample population did
not reach a mature stage of understanding of what it means
to learn how to program. Similarly most of the students’
experience of program correctness focuses mainly on the
tangible elements of the language and the problem, instead
of viewing correctness in context. Our findings also
suggest that the way students experience learning to
program is related to their perception of what are the
criteria for program correctness.

It is essential that educators are aware of how students
experience and understand specific programming
constructs and programming as a whole. This study not
only provides a deep insight into the students’
understanding of these themes; it also provide a strong
foundation for future work aimed at helping students’ reach
a more mature understanding of object oriented
programming.

7. ACKNOWLEDGMENTS
This project is funded by the Irish Research Council for
Science, Engineering and Technology, (IRCSET) under the
Embark Initiative, and by the Information Technology
Investment Fund, administered by the Higher Education
Authority, Ireland.

8. REFERENCES
[1] Akerlind, S. G., Principles and Practices in Phenomenographic

Research, in Proceedings of the International Symposium on
Current Issues in Phenomenography, Australia, pp. 1-17
2002.

[2] Booth, S., A Study of Learning to Program an Experiential
Percpective, Computers In Human Behaviour, Vol. 9., pp.
185-202, 1993.

[3] Booth, S., Learning to Program. A Phenomenographic
Perspective. No. 89 in Goteborg Studies in Educational
Science. Acta Universitatis Gothoburgensis, Goteborg,
Sweden, 1992.

[4] Bruce, C., McMahon, C., Buckingham, L., Hynd, J.,
Roggenkamp, M. and Stoodley, I., Ways of Experiencing the
Act of Learning to Program: A Phenomenographic Study of
Introductory Programming Students at University. Journal of
Information Technology Education, Vol. 3, pp. 143-160,
2004.

[5] Carter, J. and Jenkins, T., Gender and programming: What's
going on?, SIGSCE/SIGCUE Conference on Innovation and
Technology in Computer Science Education, ITiCSE, pp. 1-4
Poland, 1999.

[6] Eckerdal, A. and Berglund, A., What Does It Take to Learn
‘Programming Thinking’?, in Proceedings of the 2005
International Workshop on Computing Education Research,
ICER’05, pp. 135-142, Washington, 2005.

[7] Kolikant, Y. B. D., Students’ Alternative Standards for
Correctness”, in Proceedings of the 2005 International
Workshop on Computing Education Research, ICER’05, pp.
37-43, Washington, 2005.

[8] Marton, F. and Booth, S., Learning and Awareness. Lawrence
Erlbaum Ass., Mahwah, NJ, 1997.

118

