
The Novice Programmer’s “Device to Think With”

Dermot Shinners-Kennedy
Dept. of Computer Science and Information Systems

University of Limerick
Limerick, Ireland

dermot.shinners-kennedy@ul.ie

David J. Barnes
School of Computing

University of Kent, Canterbury
Kent CT2 7NF, UK

d.j.barnes@kent.ac.uk

ABSTRACT
We present some ideas for course material for the introductory
teaching of programming that are based on the principle of
allowing the students to be the domain experts. The idea is that the
students’ familiarity with the domain of discourse will make
course material more motivating, and that it will be more likely
that they will be able to model the concepts and artifacts being
discussed. This approach thereby seeks to scaffold the students’
understanding of programming-related concepts. For reasons
discussed in the paper, we have chosen mobile phone technology
for this discussion, but there is no reason why the same principles
should not be applied to other culturally-accessible domains.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]: Computer
science education.

General Terms
Algorithms, Human Factors, Languages.

Keywords
CS1, curriculum ideas, mobile phones, student-centered learning.

1. INTRODUCTION
Our discipline suffers an interesting paradox. It is widely accepted
that the development of a knowledge economy is hugely
dependent on information technology and yet student enrolments
and retention levels on courses are almost universally low. The
discipline also has a serious gender imbalance. One of the reasons
for these problems is that existing pedagogies and materials can be
inaccessible or alienating and haven’t always kept pace with
cultural changes. Our pedagogy has to develop and embrace new
educational thinking and practice if it is to meet the demands made
of it. This is one of the reasons why we have witnessed, in recent
years, manifold initiatives to make introductory programming
attractive and accessible: the development of a plethora of
introductory programming environments such as Alice, BlueJ,
DrScheme, Greenfoot, Scratch, etc.; initiatives with robotics;
advocacy of different pedagogical approaches (objects-first,

functions-first, procedures-first, etc.) and curriculum ideas. Yet,
for all this effort, there remain no definitive research results or
consensus among the education community to identify a clear
winner. At present, it seems that the most likely success factor in
the initial teaching of programming remains the commitment and
enthusiasm of the teacher – which, at least, is reassuring for those
of us who are passionate about teaching!

2. MOTIVATING STUDENTS
Teachers are always looking for approaches and examples that
will be interesting to their students. At the whole-course level, this
is one of the main reasons why we see robotics, for instance, being
used in various ways. The same principle is also often applied at
the level of individual topics within a course. For instance,
recently there was a discussion on the SIGCSE mailing list [10]
about the motivational appeal of traditional recursive examples.
There was some consensus that exemplars such as Towers of
Hanoi and the computation of factorial or Fibonacci values lack
appeal. Wirth’s example of parking cars [11] was one suggestion
offered to provide “some real-world characteristics” in a problem
with a good recursive solution. However, the central issue is
whether students will be able to understand the problem being
addressed, and whether they will also see a rationale for
addressing it.

Aristotle once observed that, “It is the customary that is
intelligible” [1]. There is a remarkable simplicity and logic to the
notion that if someone has a deep interest in puzzles and games,
for example, then efforts to stimulate intellectual curiosity and
inquisitiveness using puzzles and games are likely to be highly
successful. For someone with no interest in puzzles and games the
outcomes are likely to be less successful. This is a classic dilemma
for teachers – in the context of a diverse set of interests what
‘things’ can be used to engage the intellectual curiosity of the
students?

Results from the international Relevance of Science Education
(ROSE) project [9], show that the interest profiles of boys and
girls follow typical gender-related differences. For example, girls
tend to be more interested in human biology, health issues,
reproduction and cosmetics; boys are more interested in explosive
chemicals, spectacular phenomena like earthquakes and
hurricanes, weapons, engines and other everyday mechanical
equipment. However, there are exceptions. Both girls and boys
are interested in how mobile phones, CDs and DVDs work.
Ironically, none of these key twenty-first century devices appear
to receive significant widespread attention in science – including
computing science – curricula.

All of the concepts introduced in a typical programming course
are within the conceptual competence of a young child. Children

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03…$10.00.

511

can make choices between alternatives, repeat a task until it is
complete, search a list for something, and so on. Yet, despite the
fundamental simplicity of basic computer operations, traditional
approaches are loaded with attempts to develop new skills in
students via the medium of unfamiliar and inaccessible scenarios.
The ideas we explore here seek to build on the apparently gender-
neutral area of familiar technology that the ROSE project
highlights, both to scaffold and motivate the learning of
introductory programming. Our view is that we should try to
develop curriculum ideas around those things that are both
familiar and interesting to our students. The problem for us as
teachers is that Aristotle’s words apply equally well to us as to our
students: we are most comfortable with the things that we grew up
with, learned about as undergraduates, or are excited about now;
but that does not mean that they will be equally accessible or
appealing to our students.

3. A DEVICE TO THINK WITH
When, nearly thirty years ago, Seymour Papert published his view
of, “how computers may affect the way people think and learn”
[7] he described, “[a] computer rich future, a future where a
computer will be a significant part of every child’s life.” We are
clearly now in that future. Mobile phones have more computing
power than the first Apollo spacecraft that landed on the moon [3],
and virtually every child and student has one. That computing
power represents what Papert identified as an object-to-think-with,
“[an object] in which there is an intersection of cultural presence,
embedded knowledge, and the possibility for personal
identification.”

Our approach is to take the students' familiarity with (and
acceptance of) the mobile phone as an ordinary everyday object,
and use the seemingly limitless potential it offers to explore the
world of programming. However, it is important to appreciate that
this is not about teaching students to program real mobile phones;
rather it is about using the familiar features of a mobile phone to
enable students to understand programming concepts, and hence
develop traditional programming skills within a bounded, tailored
environment. The ideas discussed here are built around a software
simulation of a basic mobile phone, to which the students add
enhancements that serve to illustrate programming concepts.

Central to this approach is the inversion of the relationship
between teaching and learning. By situating the student activities
in a scenario (the mobile phone) that they are not only comfortable
with but in which they are experts, the teaching and learning
dynamic is fundamentally altered. Instead of the tutor introducing
material and providing examples, the students explore and
investigate concepts and ideas that they are already familiar with.
The tutor simply provides the conditions in which the students can
learn. In our view, mobile phones epitomize the type of object-to-
think-with that Papert envisioned. This approach articulates a
pedagogy that exploits students’ familiarity with mobile phone
technology to scaffold their learning of programming.

Ausubel succinctly summarized the basic idea when he wrote, “If
I had to reduce all educational psychology to just one principle, I
would say this: The most important single factor influencing
learning is what the learner already knows. Ascertain this and
teach him accordingly.” [2]

There is an interesting parallel to our approach to be found in the
nineteenth century. In a series of six lectures he delivered to young
people at the Royal Institution in London in 1861, the renowned
experimental scientist Michael Faraday chose a candle, a simple,
everyday object, to explain the fundamental principles of
chemistry. Faraday chose a candle because, he explained, “There
is not a law under which this universe is governed which does not
come into play and is not touched upon in these phenomena.” [5]
In a similar vein we would suggest the utility of using a mobile
phone for the same purposes within the field of computing. To
paraphrase Faraday, we would dare to suggest that, “There is not a
law under which computing is governed which does not come into
play and is not touched upon in mobile phones!”

4. CURRICULUM IDEAS
In this section, we provide a small sample of the many ideas that
can be drawn from the scenario to provide material for various
stages of both CS1 and later courses. While our focus is primarily
object-based, the domain of the mobile phone is clearly not tied
purely to an object-oriented approach. It also offers scenarios for
many of the procedural and algorithmic elements we wish to
teach.

4.1 Fundamentals of classes and objects
Successful introduction of object-orientation requires the
establishment in students’ minds of a clear understanding of the
nature of classes and objects: class as a type and objects as
independent instantiations of that type; objects maintaining state
variables that require initialization, may be inspected and might be
modified. Classes that relate to concrete artifacts from a student’s
experience stand the best chance of communicating these facets.
An example we might use is that of a text message. We can talk
about text messages in general terms: they contain characters that
make up the message; they are sent to someone; they have a date
and time of sending; they have a sender. All of these are familiar
ideas and relate to the notion of class or type. But we can also talk
about specific text messages: the one I sent to Helen this morning
about meeting up after class; or the one Tim sent me yesterday
asking to borrow my notes. These are the individual instantiations
of the general idea of a text message. Every text message has the
same components (structure) at the class level, but every
individual text has its own settings for those components at the
object level. Little, if anything, of the scenario needs explaining to
the students, because they know this already, and from that
understanding we can easily link to the new (programming)
terminology we wish to use. From there we can introduce some
simple code to implement those ideas.

The class in Figure 11 contains just the essential elements to
represent a basic text message: fields to store the configurable
items, a constructor to initialize the fields, and accessor methods to
inspect the values of the fields. Since text messages are essentially
immutable, we can omit mutator methods at this stage. Within an
environment such as BlueJ [6] a complete project containing just
this class could be defined, and instances created and investigated
via its object bench – giving physical reinforcement to the ideas of
instance multiplicity, identity of structure, yet individual
expression.

512

In order to illustrate that we are not suggesting that the mobile-
phone scenario offers just one route through a course, but a rich
source of ideas that can be adjusted to fit the needs of both
students and course material, we offer an alternative introduction
to these class fundamentals. This route might be used with
students who have existing programming experience, for instance,
or who require a more sophisticated approach.

public class Text
{
 // Components of a text message.
 private String from, to, message;

 // Constructor/initializer
 public Text(String whoFrom, String whoTo,
 String mess)
 {
 from = whoFrom;
 to = whoTo;
 message = mess;
 }

 // Field/property accessor
 public String getFrom()
 {
 return from;
 }
 ...
}

Figure 1: Elements of a text-message class

The level at which we pitch the notion of class is completely
flexible, and is simply a reflection of the degree of abstraction we
wish to work with at any particular time. For instance, we might
wish to focus on the phone’s physical aspects and look at the
whole phone as an object; or we might wish to consider its
individual components as objects – the keypad, the screen, the
battery, and so on. The notion of abstraction is obviously a
particularly important one in the world of object-orientation, and
one that will be touched on repeatedly at different times in a
course. For some students, being able to relate the concepts of
class and object to physical things may be easier than virtual
things like text messages. With this in mind, we might define a
class to model the battery of a mobile phone. A battery has a very
simple state description – its level of charge – that will need to be
monitored via an accessor method. We will want to modify the
state via charging, and the charge level will be reduced through
use of the phone. Exactly how realistically we want to try to
model charge depletion and restoration is up to us – sending a text
or receiving one might incur a charge cost, for instance. In one
simple implementation we have used a small thread associated
with a battery object that periodically reduces the level. This
means that we can create a fairly realistic scenario in which a
number of battery objects can be created and individually queried
for their levels, which obviously vary independently. A battery
would probably not have a visualization at this stage, because that
is not an inherent part of its functionality but an artifact of
presentation.

While the scenario is clearly more sophisticated than the one using
Text objects, the lessons are still the same: the Battery class
defines a regular structure that all battery objects share; the class
has a field for storing a battery’s level, which can be queried; and
each instance maintains its state independently of every other.

What both examples have in common is that students get to work
with stand-alone elements that they can explore, develop and test
independently, and that will later be integrated with other
components to build more complex systems. That provides a
further important practical illustration of the value of writing
cohesive classes that don’t try to do too much – sophistication is
achieved through composition.

4.2 Collections
Collections are pivotal structures in programming systems. As a
source of examples the mobile phone is almost unrivalled. A
mobile phone is essentially a collection of collections! For
example, a typical mobile phone has a contacts list that is usually
alphabetically ordered (ascending); a speed dial list that is ordered
on the basis of personal preference (ranking); an incoming
message list ordered by time of arrival (last-in first-out); recently-
used number lists that reorder dynamically; text prediction and
other word lists ordered on frequency of use (self-organizing); and
so on. Where audio or image files are supported, the phone allows
the user to create their own collections and populate them as they
please. For example, most users arrange their audio files into
‘playlists’ which can be played sequentially or in random order.
Similarly, image files can be arranged into ‘slide shows.’

Mark Twain once observed that, “It ain't what you don't know that
gets you into trouble. It's what you know for sure that just ain't
so!” When asked, most students will claim not to have
encountered a self-organizing list, a list that uses a last-in first-out
mechanism, or a list that could be empty. However, a little
prompting helps them to realize that the text prediction feature in
some phones initially displays word suggestions based on general
usage but, over time, prefers the words that have appeared
frequently in the text they have typed. How the phone handles
incoming messages by placing the most recent as the first reveals
the stack-based nature of the incoming message list. The
possibility of an empty ‘to-do’ or ‘missed call’ list seems obvious
once it has been brought to your attention but invariably evades
cognition in a free recall scenario.

This type of inert knowledge is notoriously difficult to utilize and
led Perkins to label it as ‘troublesome knowledge’ because it, “sits
in the mind's attic, unpacked only when specifically called for by a
quiz or a direct prompt but otherwise gathering dust.” [8]
Unknown to them, mobile phone users have been exposed to
virtually every collection operation that would be included in a
typical data structures course. They have experience of collection
creation, maintenance and removal. They are aware of the benefits
of having a variety of access strategies for collection elements
(e.g., browsing, search, random selection, iteration in specified
sequences). In addition, the idea of using two different 'keys' to
locate entries in a single collection is not a novelty. For example,
when they receive a call the phone software searches their contacts
list for the number and, if found, displays the associated name on
the screen. This useful feature allows them to decide whether to
answer the call (i.e., it's a friend calling) or not (i.e., it's a parent
calling). Conversely, when they are making a call they can search
the contacts list for a particular name and have the software dial
the number of the chosen entry.

As the earlier enumeration of different possible organizations
highlighted, collections are a rich source of conceptual exemplars
ranging from the very simple to the very sophisticated. They also
encapsulate a wide variety of simple but significant algorithms

513

that the typical programmer uses and reuses in the course of
developing a system. Many of these algorithms are provided in
libraries and other support tools but their exposition to novice
programmers can help them perfect their design and
implementation strategies and skills. Figure 22 is an example of
using a list structure that many phone owners will have used
unconsciously in a variety of contexts, such as randomly playing
tracks in a playlist or randomly displaying images captured with
their phone. From examples such as this, parallels can easily be
drawn beyond the basic scenario.

void playShuffled(ArrayList<Track> playList)
{
 int toPlay = playList.size();
 while(toPlay > 0) {
 int chosen = random.nextInt(toPlay);
 Track track = playList.get(chosen);
 play(track);
 toPlay--;
 // Swap the chosen track with the
 // last one left to play.
 playList.set(chosen,
 playList.get(toPlay));
 playList.set(toPlay, track);
 }
}

Figure 2: Method to play tracks in a playlist randomly

As Figure 3 shows, with minor alterations the algorithm can be
used to randomly choose n unique numbers in the range 1..max.
(For the sake of variation we have used an array this time rather
than a list.) This is another algorithm the equivalent of which
many will have exploited, again unconsciously, if they are in the
habit of playing the lottery.

void chooseLotteryNumbers(int n, int max)
{
 // Create the set of possible numbers.
 int numbers = new int[max];
 for(int i = 0; i < max; i++) {
 numbers[i] = i+1;
 }

 // Select and print n from the set.
 int remaining = max ;
 for(int i = 0; i < n; i++) {
 int chosen = random.nextInt(remaining);
 int selectedNumber = numbers[chosen];
 System.out.println(selectedNumber);
 remaining--;
 // Swap the chosen number with the
 // last one left available.
 numbers[chosen] = numbers[remaining];
 numbers[remaining] = selectedNumber;
 }
}

Figure 3: Method to select n unique values from 1 .. max

4.3 Exception Handling
Most mobile phone users have had the experience of their battery
going 'dead' or 'flat' during a call. Similarly, phone users operating
on 'pay as you go' or 'top-up' schemes have tried to make a call or
send a message only to discover that their credit balance is
insufficient to cover the cost or runs out during the call. These
experiences will have made them aware of the fact that the
severity of the problem will influence both the amount of thought
given to its likely occurrence and the effort required to resolve it if
it does occur. For example, they know that if they are unable to

receive messages because their message box is full the problem
can be resolved quite easily by deleting some messages. The
problem is a trivial one, as is the solution. A flat battery is more
significant. Resolving that problem requires possession of a phone
charger and access to a power source. In the absence of either or
both of those resources the problem appears unsolvable, unless
you are a creative mobile phone user who understands that
convincing someone to let you put your SIM-card in their phone
keeps you ‘online’. In the same vein, running out of credit is a
very difficult problem to solve if you have no money. While
friends may allow you to run down their battery, they may not be
quite so willing to let you run down their bank balance! If you
have no credit and no access to funds you are ‘offline’ – period.

Simple problems can usually be handled easily. For example,
putting the same name and number in your contacts list may be a
nuisance but nothing more significant. Harder problems may
require more work and cooperation with other entities, or objects.
Serious problems need to be checked out and acted upon
otherwise the system may be compromised. Some problems
cannot be resolved and oblige us to stop using the phone.

The fact that the foregoing appears painfully obvious is precisely
why it is pedagogically attractive to tutors. Phone scenarios
provide a considerable range of contexts for exploring the nuances
of exception handling. The following example is but one of very
many candidate examples.

Mobile phone companies measure numbers of text messages
handled in billions per month and it is not uncommon for young
mobile phone users to send several hundred text messages a day!
As a consequence they are very familiar with the types of
difficulties that can arise and those difficulties (literally) need no
introduction. For those of us lacking that expertise the difficulties
can include:

 unknown number (i.e., recipient);

 a weak or non-existent signal;

 insufficient credit;

 recipient cannot be reached at the moment because of
their signal level;

 network difficulties (i.e., the provider’s infrastructure is
not fully operational).

The outline of a possible message-sending method is shown in
Figure 4. It is passed the recipient's number and the message text.
It uses the Text class of Figure 11 to encapsulate the details
required by the provider transmitting the message. The provider
attempts to transmit the message. Success produces a confirmation
message on the phone screen. Failure results in an exception being
thrown by the provider.

The method handles only those exceptions it is competent to deal
with. Cases involving an unknown number or poor signal are
propagated up the method-call stack and left to be handled at the
appropriate level. For example, the code used to choose a number,
or allow one to be entered, can catch the unknown-number
exception and provide the user with an option to supply another
number. It may even impose a limit on the number of attempts the
user can have. Handling exceptions involving poor or no signal
may include an option to move the phone before trying to resend.

514

void sendMessage(String whoTo, String msg)
 throws ...
{
 try {
 Text txt = new Text(number, whoTo, msg);
 provider.sendText(txt);
 screen.setStatusBar("Message sent.");
 }
 catch(InsufficientCreditException e) {
 // Put txt in DRAFTS ...
 }
 catch(UnreachableException e) {
 // Handle exception ...
 }
 catch(NetworkProblemException e) {
 // Handle exception ...
 }
}
Figure 4: Sending a text-message with exception

handling

Readers will, of course, note that many additional features could
be added to the scenario and that, in many respects, it is a
simplistic exemplar of what is actually required to handle the
possibilities that arise. Fortunately the same observations will be
made by most experienced mobile users. While the notation may
be unfamiliar to them, most phone users can, without prompting,
quickly spot deficiencies in the scenario and, more importantly,
offer suggestions as to how it might be improved. Students trade
their inadequate knowledge of the mechanism used to specify how
to achieve something for their expert knowledge of the things that
need to be achieved. Their status as collaborators allows them to
focus on acquiring what they don't know (i.e., exception handling
mechanics and the associated notation) and contributing what they
do.

The typical mobile phone user is fully aware that the exceptions
enumerated in this example are not unique to the task of sending
text messages. In those circumstances the idea of developing a
classes of error conditions that would be beneficial for all
operations associated with the phone is quite sensible.

One of the key attractions of discussing exception handling in the
context of a mobile phone is that you cannot afford to ignore
them, or avoid them occurring. Maintaining the integrity of the
system by correctly handling exceptions is a critical aspect of a
phone’s operation. This feature is rarely the case in most example
scenarios used to teach students about exception handling. Having
the software in your phone 'crash' simply because you mistyped a
recipient's number would be completely unacceptable. Broader
discussions about software features such as quality, robustness and
safety are facilitated by the students' own evaluations of their
mobile phone implementations. The centrality of good design is
readily identifiable.

5. A CONCEPTUAL MISCELLANY
In its role as a ‘device to think’ with the range of concepts
encapsulated within the mobile phone is truly extraordinary. In the
preceding section we considered three examples at some length. In
this section we offer a further series of conceptual 'snapshots' as a
sample to highlight the diverse nature of the possibilities.

If at your first meeting with a class of novice computing students
you ask them if they have ever undertaken a user interface
evaluation their initial response will usually be, “A what?”
followed quickly by a unanimous, “No.” Further investigation will
probably reveal that some of the class use ‘text prediction’ on their

mobile phones and some of them don't. Asking each group to
explain why they do or don't provides an initial list of pros and
cons of text prediction systems. Putting it to them that clearly they
had previously undertaken a user interface evaluation, albeit in a
superficial and unsystematic fashion, not only establishes the
credibility of their experiences but also encourages them to reflect
more deeply on activities they are about to engage in.

For most of us "RUK4DD82MWB" is an unintelligible jumble of
letters and numbers. (Aside: It rarely occurs to programming
tutors that their early examples may have the same status!) That it
might be a meaningful representation of something is
disconcerting. Yet introducing some minor formatting features
may make it a little more comprehensible. For example, simply
introducing some white space can make it look like "R U K 4 D
D8 2M WB." The knowledge that D8 is an abbreviation for
DATE, 2M an abbreviation for TOMORROW and WB for
WRITE BACK might allow us to decipher the message as "Are
you OK for the date tomorrow? Write back."

While the original message is perfectly understandable to a text-
messaging zealot, they often complain about its 'style.' Many,
especially those who use text prediction, would insist that the
message be typed without abbreviations. Others find the cryptic
nature of the abbreviations quite acceptable and even laudable!
For a programming language tutor it is quite useful to allow
differing views on the stylistic properties of text messages to be
voiced because it is a topic that has to be addressed in the context
of programming languages as well. Of course, the same issues will
surface but the benefits of consensus in the application of stylistic
conventions will appear self-evident in light of the prior exposure
to the text messaging discussion.

After a number of experiences of the type just outlined, students
acquire a slightly different disposition when responding to what
appear to be the tutor's innocuous questions and prompts. For
example, when invited to state if they have ever used a WORM
(i.e., Write Once Read Many) device they tend to pause a little
while longer before answering. Their altered disposition is a sign
of their maturing ability to reason. They have abandoned their
knee-jerk response approach and substituted in its stead a more
considered evaluation of the question or problem posed. This is a
desirable quality in a graduate of computing!

The WORM question may evoke an association with DVDs, CDs,
credit cards, security badges and similar devices or objects.
Success with this type of association has a significant impact on
the student's confidence and self-belief. This type of affective
outcome can be as important as any achievements associated with
the acquisition of technical expertise.

The everydayness of WORM-style objects can make the concept
of immutable objects seem almost mundane. The fact that, for
example, in some programming languages a string can be created
but not altered is viewed as a feature of strings not a flaw in the
language. Immutable objects have a place in the world and by
extension must have a place in any model of that world that we
choose build.

Modelling the world of mobile phones invariably draws us into the
management of phone charges and billing. At its simplest this
affords the opportunity to explore issues of database design,
information retrieval and update. In a broader context it provides
an opportunity to explore the elicitation of organisation knowledge
and rules, the design and specification of systems to operationalize

515

the findings and the implementation of a system to realize the
design.

As features are added to the software implementation of a mobile
phone, or design decisions made about exactly how those features
will be implemented, the sense emerges that we will want to have
phones with variations – in the real world, not all phones are the
same. Nevertheless, students can probably identify a core of
functionality that is shared among all phones, while not resulting
in a complete phone. The concept of abstract classes emerges from
this analysis, along with concrete subclasses. There is also a
technical progression observed in the phone world: manufacturer
M adds special feature F to their phone, and other manufacturers
quickly follow in order to keep up; the process repeats. When
thinking about this in software terms, feature F might start as a
subclass feature but, for the sake of utility and good structure,
eventually gets refactored from the subclass to the superclass.

Finally, how one interacts with the phone services and facilities
provides plenty of opportunities to consider the challenges
associated with the development of a GUI for a mobile phone.

6. EXPERIENCE
This approach has been used successfully via a pilot run in 2008
and a more developed version in 2009. We are continuing to
expand the ideas further in the current academic year and
ultimately plan to make the materials available to the academic
community. A number of students have reported that they cannot
use their mobile phones now without thinking about what is going
on inside. What is particularly powerful about this outcome is that
it is reinforced every day because the students use their phones
every day.

As indicated in the introduction, it would be naive to suggest that
the ideas outlined in this paper necessarily offer a guarantee of
success. However, we do believe the mobile phone scenario has
the potential to support the type of ‘spiral curriculum’ approach
advocated by Bruner, “A metamorphic spiral in which at some
simple level a set of ideas or operations were introduced in a rather
intuitive way and, once mastered in that spirit, were then revisited
and reconstrued in a more formal or operational way, then being
connected with other knowledge, the mastery at this stage then
being carried one step higher to a new level of formal or
operational rigour and to a broader level of abstraction and
comprehensiveness. The end state of this process was eventual
mastery of the connexity and structure of a large body of
knowledge.” [4]

7. CONCLUSION
We have presented a sample of ideas for course material for the
introductory teaching of programming that are based on the
principle of allowing the students to be the domain experts.
Having chosen a subject domain known to have wide appeal
across both cultures and genders – the mobile phone – we make

use of students’ existing interest and expertise to explore a phone’s
features via software development. This idea mimics an approach
taken by Faraday to explore the world of chemistry via the
medium of a candle. However, just as a candle would be of little
use for this purpose today, it is inevitable that at some point in the
future the utility of the mobile phone as we have illustrated it is
likely to be surpassed by some other near ubiquitous device. The
essential message of this paper, therefore, is to encourage teachers
to maximize the opportunity for broad engagement with their
students through making use of those things that are familiar to
and interesting for the students.

8. ACKNOWLEDGMENTS
This work is supported in part by a SIGCSE Special Projects
Grant. The views expressed are those of the authors.

9. REFERENCES
[1] Aristotle 350 BCE. Metaphysics.

[2] Ausubel, David 1998. In Learning, Creating, and Using
Knowledge: Concept Maps as Facilitative Tools in Schools
and Corporations, Joseph D. Novak. L. Erlbaum Associates,
Mahwah, N.J.

[3] Ben-Ari, M. 2005. The concorde doesn't fly anymore. In
Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education (St. Louis, Missouri, USA,
February 23 - 27, 2005). SIGCSE '05. ACM, New York, NY,
196-196. DOI=
http://doi.acm.org/10.1145/1047344.1047354.

[4] Bruner, J.S. 1960. The Process of Education, Harvard
University Press, Cambridge, MA.

[5] Faraday, Michael 1978. The Chemical History of a Candle,
Cherokee Publishing Company, ISBN 978-0877972099.

[6] Kölling, Michael, et al 2010. BlueJ – the interactive Java
environment, http://www.bluej.org/ Accessed 2010.09.01.

[7] Papert, Seymour 1993. Mindstorms: Children, Computers
and Powerful Ideas, 2nd edition. Basic Books, ISBN
9780465046744.

[8] Perkins, David 1999. The many faces of constructivism.
Educational Leadership 57, 3 (Nov 1999), 6-11

[9] ROSE, The Relevance of Science Education.
http://www.ils.uio.no/english/rose/ Accessed 2010.09.01.

[10] Topham, Dave 2010. CSI Functions First. sigcse-members
mailing list discussion initiated 11th July 2010.

[11] Wirth, M. 2008. Introducing recursion by parking cars.
SIGCSE Bull. 40, 4 (Nov. 2008), 52-55. DOI=
http://doi.acm.org/10.1145/1473195.1473219.

516

