
Computers & Education 61 (2013) 115–132
Contents lists available at SciVerse ScienceDirect
Computers & Education

journal homepage: www.elsevier .com/locate/compedu
SLurtles: Supporting constructionist learning in Second Life

Carina Girvan*, Brendan Tangney, Timothy Savage
Centre for Research in IT in Education, School of Education and School of Computer Science and Statistics Trinity College, University of Dublin, Dublin, Ireland
a r t i c l e i n f o

Article history:
Received 23 August 2011
Received in revised form
1 August 2012
Accepted 6 August 2012

Keywords:
Constructionism
Interactive learning environments
Pedagogy
Construction
Programming
Virtual worlds
* Corresponding author. Tel.: þ353 (0) 18963812.
E-mail addresses: girvanc@tcd.ie (C. Girvan), tangn

0360-1315/$ – see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.compedu.2012.08.005
a b s t r a c t

Constructionism places an emphasis on the process of constructing shareable artefacts. Many virtual
worlds, such as Second Life, provide learners with tools for the construction of objects and hence may
facilitate in-world constructionist learning experiences. However, the construction tools available
present learners with a significant barrier (or ‘high-floor’) for the novice to first master. To address this
problem, this paper presents the design concepts, first implementation and analysis of SLurtles
(programmable turtles in Second Life), easy-to-use, programmable construction tools for use in Second
Life. During a pilot study 24 postgraduate learners in pairs and working at distance from one another,
programmed SLurtles to create interactive installations in Second Life over four weeks. Open interviews
were conducted, chat logs recorded and learners artefacts and reflections were collected and analysed
using qualitative methods. Findings show that SLurtles provide learners with a programmable, low-floor,
high-ceiling and wide-wall construction tool, which supported their construction of a wide range of
complex artefacts as part of a constructionist learning experience in Second Life.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Underpinning constructionist learning experiences is the learner’s engagement with programming and the construction of personally
meaningful and shareable artefacts (Hoyles, Noss, & Adamson, 2002). On first glance virtual worlds appear to provide an exciting new
environment to engage in constructionist learning experiences. However the inbuilt tools of virtual worlds such as Second Life and Active
Worlds present the novice with a high-floor (steep learning curve) barrier to overcome (Dickey, 2005; Sanchez, 2009).

While Scratch for Second Life (S4SL) provides a low-floor and high-ceiling (powerfully expressive) programming environment for the
virtual world Second Life, it does not support the construction of artefacts. Learners must first learn how to use the relatively complex 3D
object modelling tools before they can engage in exploring, testing and extending their understanding. Thus to enable constructionist
approaches to learning within virtual worlds, it is first necessary to lower the barriers to engagement.

To address the need for a low-floor construction tool in virtual worlds, this paper presents the design and implementation of SLurtles
(programmable turtles in Second Life). Borrowing design concepts from Lego and Turtle graphics, SLurtles build upon S4SL and are designed
to provide learners in Second Life andOpenSimwith programmable tools withwhich to create personallymeaningful and shareable artefacts.
To guide research into the use of SLurtles by learners, the following question is posed:

� Do SLurtles provide learners with a pedagogical tool with which to engage in constructionist learning in virtual worlds?

Underpinning the design of SLurtles are the concepts of a low-floor (easy to use), high-ceiling (powerfully expressive) and wide-walls
(support the creation of a variety of artefacts), concepts central in the design of constructionist tools for learning. Considering Norman’s
(1999) distinction between designed and perceived affordances, while designed for, these affordances may not emerge when SLurtles
are used by learners. While a block programmed to be persistent, will be persistent, SLurtles may not be easy to use. The complexity of
constructionsmay be constrained. Similarly, while aiming not to limit the types of constructions which learners couldmake, this may not be
ey@tcd.ie (B. Tangney), Tim.Savage@cs.tcd.ie (T. Savage).

ll rights reserved.

Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_surname
mailto:girvanc@tcd.ie
mailto:tangney@tcd.ie
mailto:Tim.Savage@cs.tcd.ie
www.sciencedirect.com/science/journal/03601315
http://www.elsevier.com/locate/compedu
http://dx.doi.org/10.1016/j.compedu.2012.08.005
http://dx.doi.org/10.1016/j.compedu.2012.08.005


C. Girvan et al. / Computers & Education 61 (2013) 115–132116
perceived to be true by the learner. Thus, these design concepts are examined through a pilot study of SLurtles with learners, which also
provides an opportunity to engage in an open exploration of learners’ use of SLurtles. Thus the following sub-questions are:

B Do SLurtles provide learners with a low-floor construction tool?
B Do SLurtles provide learners with a high-ceiling construction tool?
B Do SLurtles provide learners with a wide-wall construction tool?
B How do learners use SLurtles as part of a constructionist learning experience?

To pilot the use of SLurtles by learners, an exploratory case study approach is employed. 24 learners took part in a four week
constructionist learning experience in Second Life, as part of a postgraduate course in teaching and learning. Through qualitative
analysis of participant interviews, chat logs, the artefacts they created using SLurtles and their personal reflections, SLurtles are found
to provide learners with an empowering low-floor, high-ceiling and wide-wall construction tool with which learners were able to
engage in the construction of personally meaningful and shareable 3D artefacts as part of a constructionist learning experience in the
virtual world.

2. Background

2.1. Virtual worlds

Currently the literature lacks clear consensus as to what constitutes a virtual world but broadly, virtual worlds can be described as
providing multiple users with a persistent, three-dimensional environment in which they are embodied as avatars. Through these avatars
users can interact with the environment and other users, whilst co-located or at a distance. Unlike massively-multiplayer online role-
playing games (MMORPGs), virtual worlds lack ‘game grammar’, as defined by Gee (2003), and hence have no pre-defined aims or
objectives for users to pursue. In addition to these generic features some virtual worlds such as Second Life and Active Worlds support user
generated content. This study focuses on Second Life, a common choice for third-level educators using virtual worlds (Dalgarno, Lee, Carlson,
Gregory, & Tynan, 2011; Kirriemuir, 2010).

It is important to note that it is not the features of a technology that support learning (Andreas, Tsiatsos, Terzidou, & Pomportsis, 2010),
rather it is how they are perceived by the individual user. When an individual considers how these features could be leveraged in an
educational setting this gives rise to a set of ‘perceived educational affordances’ (Girvan & Savage, 2010). It is these perceived educational
affordances and their potential that are of interest to educators and provide opportunities for a variety of learning experiences (Warburton,
2009).

Within virtual worlds, the simulated 3D environment, avatars and range of communication tools afford interactions, a sense of self and
presence. These in turn can provide the user with: a sense of immersion within the environment; embodied social presence; and oppor-
tunities for collaborative learning (Dalgarno & Lee, 2010; Dickey, 2005; Jarmon, 2009; Minocha & Roberts, 2008; Salmon, 2009). Robertson
and Kipar (2010) suggest that Second Life can afford flexibility in both time and location of learning. Interestingly they present flexibility as
a potentially negative affordance for learning, while others present the positive outcomes of this affordance, for example real-time
synchronous teaching and learning (Johnson, Corazzini, & Shaw, 2011).

The creation of persistent objects is afforded through the combination of different features of virtual worlds such as Second Life which
support user generated content Using in-world tools, objects can be created in the environment and programmed to exhibit behaviours.
These objects remain within the virtual world even when the user has logged off, due to the persistent nature of the technology.

2.2. Constructionism in virtual worlds

It has been argued that the “implementation of learning in immersive virtual worlds in higher education lacks pedagogical underpin-
ning” (Savin-Baden, 2008, p. 151). In previous work the authors have outlined an approach to tackling this shortcoming through the
alignment of the perceived educational affordances of the virtual world with the features of potentially appropriate pedagogies (Girvan &
Savage, 2010). Table 1 summarises the alignment between Second Life and the pedagogy of constructionism.

Constructionism emphasises the role of constructing personally meaningful and shareable artefacts in order for learners to actively
explore, test and extend their understanding. As part of the constructionist process, Hoyles et al. (2002) emphasise the importance of
programming. The tools which afford the construction of persistent objects in Second Life can directly support these central features of the
pedagogy. In addition the incremental bricolage construction process (Papert, 1991) may be supported by the flexible nature of the tech-
nology and persistence can be leveraged in order to share artefacts without requiring users to be online simultaneously.
Table 1
Alignment of the perceived educational affordances of Second Life and constructionism.

m Second Life
Construct personally meaningful objects
Actively explore, test and extend 
understanding

Construction

Opportunity to programme Programming
Shareable artefact

Creation of 
persistent 
objects

Persistence
‘Invisible’ technology Immersion
Bricolage Flexibility
Collaborating on constructions Collaborative learning
In-situ Embodied social presence



C. Girvan et al. / Computers & Education 61 (2013) 115–132 117
However, the programming and object construction tools of Second Life present a high-floor barrier for learners tomaster before they can
engage in such learning. Constructionist learning experiences reported in the literature required learners to have existing knowledge in
order to engage in the construction of complex artefacts (Dreher, Reiners, Dreher, & Dreher, 2009). However not all learners have these skills,
as a result learning experiences in Second Life tend not to focus upon construction but rather on social activities in-world (Sanchez, 2007,
2009). To overcome the barriers for novices to engage in constructionist learning experiences, learners require low-floor (easy to use) tools.

2.3. Low-floor constructionist tools

Many low-floor constructionist tools stem from Logo, the seminal low-floor, high-ceiling programming language. Building on Logo,
Turtle Graphics was developed, providing learners with an ‘object-to-think-with’, whilst engaging in Logo programming. To support
engagement with the turtle character, Turtle Geometry was proposed as a computational style of geometry (Papert, 1972). Unlike Euclidian
geometry, in which there is a ‘point’which has no properties other than ‘position’, Turtle Geometry uses a ‘turtle’, which has a position but
also a ‘heading’ resulting from the direction it is facing (Papert,1972,1980). The Turtle ‘object-to-think-with’ thus provides the entry point to
Turtle geometrywhich is dependent upon both position and heading and the child’s existing knowledge of their ownmovement (Ackerman,
2004).

Whether physical or on a screen, by issuing the ‘pen down’ command Turtle draws a line as it moves until the ‘pen up’ command is
executed. By creating lines on paper or screen, learners are able to observe the movement of Turtle and reflect on the result (Papert, 1980).
Theymay then reconsider their conceptualisation of their solution to the problem, and actively experiment by changing the programme and
running it again. Thus learners are supported in their engagement with experiential learning, such as through Kolb’s (1984) experiential
learning cycle, through the construction of shareable artefacts.

The ‘pen’ commands have featured in many microworlds which have been developed since Turtle. 3D examples of constructionist tools
with clear links to Logo and Turtle Graphics include PlayLOGO 3D and VRMath. PlayLOGO 3D is designed to leverage the features of vid-
eogames such as narrative to motivate young learners to engage in programming (Paliokas, Arapidis, & Mpimpitsos, 2011), while VRMath
supports the user by providing themwith a first-person perspective of the turtle character (Yeh, 2010). Using VRMath, Yeh (2010) explored
primary school students’ understanding of 3D rotation by comparison to traditional pen, paper and body movement in the physical world.
He found that traditional classroom approaches led to misconceptions which could be identified and conceptually resolved by the children
in the 3D environment. However while these tools provide ‘pen’ commands, they only allow learners to create 2D lines in the 3D envi-
ronment. As such, 3D constructions are considered to require advanced skills (Yeh & Nason, 2004).

Following on from Logo and Turtle, Scratch (Maloney et al., 2004) provides learners with a visual programming interface in which
graphical blocks are snapped together in an intuitive fashion to create programmes to implement 2D interactive games or animations. Again
the ‘pen’ commands are available and allow the learner to create lines on the screen based on themovement of a programmed sprite. Scratch
provides a good example of how some of these more recent ‘objects-to-think-with’ have begun to ‘widen the walls’, supporting the creation
of a wide variety of artefacts depending on the interests and learning styles of the user (Resnick et al., 2009).

Each of these environments can be labelled a microworld, broadly described by Ackerman and Strohecker as “carefully crafted artificial
settings for creative exploration” (1999, p. 14). Computer-basedmicroworlds are designed to enhance themost important features of a given
phenomena and remove those that might distract the learner by “muddying” the outcome (Edwards, 1998). By comparison virtual worlds
neither enhance themost important features for learning nor remove the distracting ones. However, they do provide educators with control
over aspects of the environment, for example whether gravity is on or off. Consequently, if an educator wishes to provide a construction
environment without natural physical laws in Second Life, they can.

In contrast to purpose built microworlds, virtual worlds do not provide learners with low-floor construction or programming tools.
Instead these tools present the novicewith a steep learning curve, preventing the novice user from easily creating and programming objects.
They also do not support ‘bidirectionality’ between the programming tools and objects. Bidirectionality is described by Hoyles et al. (2002)
as an important feature of microworlds, showing the movement of the object in the code and the coding of the object in its movement.

To address the issue of high-floor programming tools in Second Life, Scratch 4 Second Life (S4SL) was designed by Rosenbaum (2008).
Based on Scratch, S4SL provides a visual programming environment outside Second Life, in which graphical blocks are snapped together to
create a programme. On the click of a button on the user interface, the S4SL code is complied into equivalent Linden Scripting Language (LSL)
code. The user then returns to Second Life and pastes the script into an object created in Second Life. Thus, S4SL allows users to quickly add
behaviours and interactivity to otherwise static objects without learning the complex c-style programming language, LSL, of Second Life.

While S4SL provides learners with a low-floor programming environment for Second Life, the 3D object modelling system used to create
persistent and shareable objects in-world remains a high-floor barrier to novices. Building on from S4SL, SLurtles have been designed to
provide learners with low-floor programmable tools for object creation.

3. SLurtle design

In order to create a low-floor tool for the construction of objects in Second Life, the affordances and constraints of S4SL, existing
constructionist tools and the perceived educational affordances of Second Lifewere considered. This section examines those that influenced
the development of SLurtles as low-floor, programmable construction tools for Second Life. In Section 3.2 the design concepts behind SLurtle
and their implementation are described. Finally a short walk-through of SLurtles in use is provided in Section 3.3.

3.1. Design influences

3.1.1. Turtle graphics
As previously indicated in Section 2.3, Papert’s (1980) Turtle Graphics provided learners with a low-floor, high-ceiling constructionist

tool, through which they could observe the effects of their programmes. Two important design concepts that came from turtle were
‘position and heading’ and ‘construction’.



C. Girvan et al. / Computers & Education 61 (2013) 115–132118
Theturtleonscreenor in theroomshowed the learnerboth itspositionandheading (Papert,1972,1980). Basedonthis the learnerknewwhich
direction it would move when given the command ‘fd’ (forward). An understanding of position and heading is necessary to engage in Papert’s
(1972) proposed computational style of geometry which was proposed in place of Euclidian Geometry inwhich a ‘point’ only has position.

Another feature of Turtle was the ‘pen’ command, through which a learner could create persistent patterns on screen or on paper by
issuing the command ‘pen down’ (to start drawing) or ‘pen up’ (to stop drawing) as Turtle moved. It was the construction of these patters
with Turtle that would be used to engage the learner in programming.

3.1.2. Lego�

Lego bricks provide users with a set of simple building blocks from which complex constructions can be developed. Much like other
construction tools designed as toys for children, Lego allows the user to engage in the bricolage construction of increasingly complex
artefacts. however unlike Meccano and similar toys which require some dexterity, Lego has a particularly low barrier to engagement,
providing modular bricks which can be connected and pulled apart easily.

In the design of SLurtles, several aspects of Legowere influential. The simple SLurtle blocks provide a low-floor with which to engage in
constructionwhilst the complexity, or ceiling, of construction is very high. While there is some variety, for example in length and width, the
form of blocks available is typically limited to cuboid shapes, although others are available. Lego also strongly supports the concept of wide-
walls which can be supported within Second Life due to the flexible nature of the environment. Individually the simple blocks do not
influence the type of artefacts that can be constructed and if a limitless box of bricks is available, users are free to create a variety of artefacts
that reflect their own interests. Unlike Lego bricks, SLurtle blocks are not connected to each other and with physical laws turned off will
remain where created by the SLurtle.

3.1.3. Scratch for Second Life (S4SL)
Hoyles et al. (2002) note that programming remains an essential aspect of constructionist learning experiences. Of the low-floor

programming tools available for use with Second Life, Scratch for Second Life (S4SL) was identified as the most powerfully expressive
(highest ceiling). S4SL (Rosenbaum, 2008) provides a low-floor, visual programming interface for Second Life.Graphical command blocks are
selected and dragged to the scripting area where they are snapped together to create a programme (Fig. 1). The concept of modular blocks
that are easily snapped together and pulled apart is evident in the design of the Scratch interface which S4SL was developed from. On the
click of the ‘Copy Linden Script’ button in the user interface, the S4SL code is compiled into equivalent Linden Scripting Language (LSL) code.

The user then returns to Second Life, creates a default script, pastes the code and places it in an object. Fig. 2 shows a section of the
compiled code in Second Life. The script is located within the square object highlighted in yellow (in the web version).

As part of the Logo/Turtle legacy, a selection of ‘pen’ blocks remain in the S4SL library. ‘Pen’ blocks in S4SL provide an opportunity with
which to create objects in Second Lifemirroring the 2D creation of patterns with Turtle but in a 3D environment. To achieve this Rosenbaum
(2008) created a ‘lineSegment’ object which could be placed in an object to be programmed using S4SL. When ‘pen down’, followed by
a movement forward occurs, an instance of the 3D ‘lineSegment’ appears (is drawn) within the virtual world. The location and length of the
new object are determined by the location of the parent object when the ‘pen down’ command was issued and how far it travelled in one
action. For example, Fig. 3 shows the S4SL programming environment and what happens in Second Life after an avatar has clicked on the
object (the cube) which contains both the LSL script generated by S4SL and a ‘lineSegment’.

However there are constraints which need to be addressed in order to use S4SL to be used in the constructionist learning experiences.
The first is that the cube in Fig. 3, when first created, is much like the Euclid point. It can be observed to have a position but no obvious
heading. When programmed to move forward it will move forward but to the learner it is not clear what direction this will be until the
programme is executed. In addition, S4SL users must explicitly embed a ‘lineSegment’ in an object so that those objects can respond to ‘pen
up/down’ commands, introducing a new barrier for learners. Finally the ‘lineSegment’ is temporal lasting only a few seconds before
permanently disappearing, therefore objects are not persistent and the construction and sharing of artefacts would be extremely limited.

3.1.4. Persistence
As identified in Section 2.1 virtual worlds afford the creation of persistent objects which can be revisited and shared following their

construction, allowing learners to explore their understanding over time and compare objects side-by-side. Persistence also supports the
sharing of objects with other learners. However to leverage this perceived educational affordance, SLurtles need to be able to create
persistent objects. To achieve this it was necessary to reprogramme the existing ‘lineSegment’ used with S4SL.

3.2. SLurtles: design concepts and implementation

Much like Turtle Graphics was developed towith which to engage learners in Logo programming, SLurtles have been designed to engage
learners in programming through the creation of persistent 3D artefacts in the virtual world. Six design concepts which underpin SLurtles
were identified from Turtle Graphics, Lego and the perceived educational affordances of Second Life. These are summarised in Table 2.

As shown in Fig. 4, a 3D turtle was created in Second Life following the Turtle tradition, to provide the learner with an understanding of
both position and heading of the object creation tool. To use SLurtles to create artefacts, learners must programme them using S4SL. When
the ‘pen down’ command is used, the subsequent move forward by the SLurtle will create a SLurtle block. Through adaptation of the
‘lineSegment’, each block created is persistent.

Each SLurtle can create only one type of block, for example a spheroid 0.1 m in height by 1 m in width. The block begins at the starting
position of the SLurtle and the length is determined by the distance the SLurtle is programmed to move in a single step. SLurtle blocks have
no texture so as not to influence the type of artefacts that could be created. To provide some variety in the type of SLurtle blocks available an
initial set of 16 SLurtles were created. SLurtles create either 0.1 �1 (height � width), 0.1 � 0.1, 0.5 � 0.5 or 1 �1 m blocks, in either cuboid,
prism, cylinder or spherical form.

The complexity of constructions and variety of artefacts should only be limited by what can be programmed in S4SL. Each SLurtle
includes a persistent ‘lineSegment’ (SLurtle block) which responds to the S4SL ‘pen’ commands. Using S4SL a SLurtle can be programmed to



Fig. 1. S4SL application showing a block being dragged from the list of available commands to the scripting area.

C. Girvan et al. / Computers & Education 61 (2013) 115–132 119
move around the Second Life environment in three dimensions, and using the ‘pen down’ command can create an instance of a single SLurtle
block.

3.3. Walk-through

SLurtles are available to learners at a ‘SLurtle collection point’ (Fig. 5) at which they can see a sample of each available block created with
a length of 1 m. Once the learner has decided on the type of block they wish to create they click on the block and a SLurtle which will make
that type of block is copied into their avatar’s inventory ready for them to use.

To use the SLurtle the learner takes the SLurtle from their inventory and places it in the environment. To programme the SLurtle they go
to S4SL and create their code, export it via the clipboard and return to Second Lifewhere they create a new script into which they paste the
generated LSL code. When this script is placed in the SLurtle the SLurtle will then execute the programme (Fig. 6). Learners can then reflect
on the experience before returning to S4SL to reprogramme the SLurtle.

A brief demonstration of SLurtles is provided in the video below (Video 1), recorded in Second Life Viewer 3.

4. Method

4.1. Participants and activity design

In pairs, 24 learners used SLurtles over four weeks as part of a postgraduate course in the area of technology and learning. The intended
outcomes were for learners to (1) experience a constructionist learning activity and to a lesser extent (2) gain an understanding of
programming. Of the 24 participants, 19 self reported as having little or no previous programming experience. Only four had experience of



Fig. 2. Compiled code in a script in Second Life.

C. Girvan et al. / Computers & Education 61 (2013) 115–132120
using Second Life before the course. Prior to the learning experience, all learners participated in a general introduction to Second Life at
distance.

The learning experience was designed to provide an opportunity to explore the use of SLurtles as low-floor construction tools as part of
a constructionist learning experience. The learning experience began with face-to-face lectures and workshops on constructionism and the
use of SLurtles.12 groupswere formed andwhere possible (in 5 of the 12 groups) non-programmers were pairedwith peoplewho had some
programming experience. All groups participated on the same Second Life island. The groups had four weeks in which to use SLurtles and
S4SL to create an interactive installation in a designated 40� 40m space on the island (Fig. 7). They were allowed tomeet face-to-face, meet
Fig. 3. S4SL programming environment on left, results of the programme in Second Life on right.



Table 2
SLurtle design concepts and implementation overview.

Design concept Implementation

Provide position and heading (turtle) Turtle character (SLurtle) used to provide position and face direction of forward motion.
Construct to engage in programming (turtle) Use S4SL to programme SLurtle to move and create blocks using the ‘pen’ commands.

An instance of the ‘lineSegment’ block (SLurtle blocks) is created as the SLurtle moves.
The length of the SLurtle block is dependent on the distance the SLurtle moves in a single step.

Persistence (virtual worlds) Adapted ‘lineSegment’ in each SLurtle is persistent
Simple building blocks (Lego) Each SLurtle creates one type of cuboid, prism, cylinder or spherical object
Complex constructions possible (Lego) Only limited by the programmes that can be created in S4SL
Variety of constructions possible (Lego) SLurtle blocks are available in a variety of simple shapes.

No restrictions as to how these blocks may be used.

C. Girvan et al. / Computers & Education 61 (2013) 115–132 121
only online or a combination of these depending on their personal preference and opportunities. At the end of the four weeks the learners
were required to present their installation and reflections on the experience to the class and submit them for assessment as part of the
course requirement.
4.2. Research design and procedures

In order to pilot SLurtles and answer the research questions an exploratory case study approach was implemented. The learning
experience took place in a private, access controlled island within Second Life and as such informed consent was required from participants
(Girvan & Savage, 2012). This was obtained from all 24 participants in a face-to-face setting prior to the start of the learning experience.

Interviews provide researchers with a particularly powerful research tool as a means to get ‘inside a person’s head’ (Tuckman, 1994) in
order to understand their subjective experience. As such they provide an opportunity to answer the research questions based on individuals’
perceptions of their experience, following the activity. Non-directive open interviews, averaging 60 min in length, were conducted one-to-
one with participants either in-world or face-to-face. Of the 24 participants, an opportunistic sample of 14 took part in the interviews,
including three participants with some previous programming experience. This sample included participants only accessible to the
researcher through the virtual world. While the mix of medium and location may influence the data collected, this approach was used to
increase participation in the research.

While observational data can provide an accurate account of events (Stake, 1995), in this study it was particularly difficult to directly
observe participants actions or the actions of their avatars in-world. This was because learners were able to access and participate in the
learning experience from any location of their choosing and at any time during the four weeks. In order to gain data on the actions of
participants during the learning experience, the chat logs of the learners’ text-based conversations were recorded by the participants
themselves. However these were limited as not all participants used the text communication tools or were able to record the chat logs.
Fig. 4. A SLurtle in Second Life.



Fig. 5. SLurtle collection point.

C. Girvan et al. / Computers & Education 61 (2013) 115–132122
Thefinalartefact createdbyeachgroupaswellas individualwrittenreflectionswerealsocollected. Thesewere treatedascorroboratorydataas
theywere created for a specific purpose and intended audience,which as Yin (2009) noteswith regard to documents,would not bewithout bias.

Fig. 8 illustrates the data collection process during and following the learning experience and Table 3 presents an overview of the
quantity of data recorded.
Fig. 6. On left: S4SL code. On right: result of the SLurtle executed code.



Video 1

C. Girvan et al. / Computers & Education 61 (2013) 115–132 123
4.3. Data analysis

In order to answer the sub-questions the first phase of qualitative analysis followed the constant comparative approach, allowing the
researcher to remain open to emergent findings. In this analysis the interviews were the primary source of data. Data analysis began with
open coding of the first interview.

As Hatch (2002) notes, qualitative data analysis is a messy process. Emergent findings shaped the flow of the data analysis which
included the generation and reduction of codes, formation of tentative categories, internal coding comparison and relational analysis. Rather
than following a sequential approach, codes and initial categories were often returned to and re-examined (Fig. 9). For example, following
the coding of the first interview tentative categories were developed, however as the number of emergent codes grew in addition to the
relational analysis it became clear that these categories would not be efficient with many codes fitting in more than one category. Similarly
the relational analysis highlighted possible coding properties and dimensions, requiring a return to coding. The use of researcher memos
was ongoing throughout the data analysis process feeding into each stage.

Saturation of new codes appeared to be reached by the seventh interview. At this point categories and sub-categories were developed from
theoriginal codes throughan iterativeprocesswhichaimedtoproduceefficient categories (Merriam,1998). The remaining interviewswere then
analysed for evidence to support or refute the categories and sub-categories. Following this, further refinement of the categories took place.
Fig. 7. Empty installation spaces with avatar prior to the activity.



Fig. 9. The messy process of data analysis.

Fig. 8. Data collection process.

Table 3
Summary of data collected.

Data Potentially available Total collected

Interviews 24 14
Chat logs 24 5
Individual reflections 24 24
Group artefacts 12 12

C. Girvan et al. / Computers & Education 61 (2013) 115–132124
Data collected from learners’ reflections, chat logs and in-world artefacts, provided corroboratory data used in triangulation. Following
this, member checking and peer examination were conducted to increase construct validity. Higher-level analysis then aimed to develop
a rich case description based on the categories and sub-categories which emerged.

The second phase of data analysis focused on the concepts of low-floor, high-ceiling and wide-walls. Separate analysis of these concepts
followed the constant comparative analysis, using the researcher generated codes as an additional corroboratory data set. All data sets were
analysed for both supporting and refuting evidence of the design concepts.
5. Findings

5.1. SLurtle design

Despite the initial skill barrier described above, SLurtles were described by learners as easy to use. However this did not constrain the
variety or complexity of artefacts created. For example, one group with no previous programming or virtual world experience created an
eclectic set of artefacts which they described as demonstrating their developing understanding of programming over the four weeks
(Fig. 10).
Fig. 10. Creating a variety of objects as understanding develops.



C. Girvan et al. / Computers & Education 61 (2013) 115–132 125
Each of the twelve groups created very different installations. For example, other installations included a piano, assault course and
enchanted forest (Fig. 11). Importantly the variety of constructions was described by participants in interview and reflections as supporting
learners in creating something that was of personal interest, a key feature of constructionism.

However at the beginning of the activity it was not obvious to learners what they might create. As one participant describing his groups’
installation said: “it was so obvious how to use it (SLurtles) ... but like what we could actually build wasn’t obvious ... it was a lot more intricate and
complicated than that and people put a lot more effort in than just, you know, doing circles or whatever”. This quote also highlights that while
there were simple constructions that could be made, learners were able to explore the creation of increasingly complex artefacts. As the
constructions became more complex so did the programmes used for construction.

While some artefacts created by different groups were similar there was evidence of multiple solutions to creating each object. As such
the potential complexity of constructions appears to have supported the variety of constructions that were created. For example, several
groups created trees as part of their installations (Fig. 12) which one participant described as requiring their most complex programme.

Although there is evidence to suggest that SLurtles provided a low-floor, high-ceiling and wide-wall programmable construction tool,
there were differences of opinion amongst participants as to whether the types of blocks that could be created by SLurtles constrained the
final artefacts or not. For example one participant noted that while the simple blocks supported their first experiences of building, they felt
their final designwas constrained by the shapes available: “the shapes, I think for the level that we were at it did exactly what I wanted it to do. I
didn’t need anything anymore advanced than that to get started with. Erm, so you could make pretty much.you weren’t going tomake something
identical to what you had in your head originally, but you could make something that did look realistically like what you wanted to find.” While
this suggests that the type of blocks may limit the appearance of the final artefact therewas no evidence to suggest that they constrained the
variety or complexity of constructions.

Similarly it was suggested that S4SL limited what could be created with SLurtles. One participant described the limited complexity of
code that could be created in S4SL as limiting their final artefact. However in an interview one of the experienced programmers stated that
he had not been able to reach the limits of the programming environment.
Fig. 11. Artefacts created by learners. Top: piano. Left: assault course. Right: enchanted forest.



Fig. 12. Various trees created using SLurtles.

C. Girvan et al. / Computers & Education 61 (2013) 115–132126
5.2. Constant comparative analysis

As an exploratory case study, the findings aim to produce a rich description of learners’ use of SLurtles during the learning experience.
Through the constant comparative analysis of interviews a variety of codes emerged (highlighted in bold) and were developed into
categories. This section focuses on categories and sub-categories which provide insight into how the learners used SLurtles.

5.2.1. Thinking
Participants described SLurtles as objects within the environment which supported their thought processes and this was achieved in

a number of ways. A particularly strong code, which was also supported by both chat logs and reflections, was SLurtle movement. For
example one participant described the importance of the SLurtle showing a clear direction of movement: “I suppose because it was something
visual to look at, and you knew what way he was facing, and that was important as well when you built something”.

Several participants described SLurtles as a focal point for their thinking about programming, beginning with their initial ideas, then
exploring and testing them in action with the SLurtle. As one participant said, “getting a SLurtle to build something based on his movement.
That’s the key thing”. A process another participant described as “cool”.

While the form of the SLurtle was important for learners, showing a clear direction of movement, one participant described the SLurtle’s
appearance as potentially constraining their thought processes: “like why not just use a paintbrush, or you know, something that would be
more relevant ... I mean, turtles don’t draw”. however others described the SLurtle’s appearance as supporting exploration and in turn
creativity: “if it’s a SLurtle ... it forces you to ask, what can this thing do? and by being forced to ask, what can this thing do, you have to experiment,
you have to play, and you also have to think he’s that way up at the moment, could it be a different way up, and if he’s this way up I can actually
draw pictures on the wall”

5.2.2. Programming
SLurtles were described in both interviews and reflections as providing learners with an opportunity to observe and reflect on the scripts

that they created. As part of the problem solving process, SLurtle action or inaction provided learners with feedback on the programmes
they had created “if it didn’t respond in a way that you thought that it would respond, it was providing you with feedback, you know, telling you I
do not respond this way”. As noted in one reflection, this feedback supported learners as they reflected on the experience: “The fact that I
could get immediate feedback from watching the actions of the SLurtle allowed me to evaluate what the script was doing in comparison to what I
wanted to happen. I found this visual feedback allowed for an accelerated understanding of what was happening within the script than if I had to
think in the abstract as to what was happening”. An example of this was found in another participants’ reflectionwhich included the snapshot
shown in Fig. 13. By comparison, while many learners described programming SLurtles and adding interactivity to objects as “easy” due to
S4SL, those that added movement to objects, described the programming as “frustrating”, as, unlike SLurtles, the objects had no obvious
direction.

Interviews, chat logs and reflections provided evidence to suggest that SLurtles in the 3D environment allowed the more experienced
programmers to easily explain abstract programming concepts, such as ‘loops’, through concrete examples to a complete novice. In



Fig. 13. Observing programming errors.

C. Girvan et al. / Computers & Education 61 (2013) 115–132 127
particular it allowed the novice to watch the SLurtle perform each step within the loop before beginning the next iteration of the loop.
By observing the actions of SLurtles and the creation of SLurtle blocks, learners were able to reflect on their programmes, redesign and
engage in active experimentation, thus they were engaged through the process of construction. Therewas evidence in the chat logs to show
that in some groups that had both novice and experienced programmers, the novice programmers began to adopt the language of the
experienced programmers to describe the actions of the SLurtle in terms of its programme. For example, one novice programmer was
recorded:

“P1: he’s gone mental”

And some time later:

“P1: he’s obviously gone into an infinite loop”

Another participant described SLurtles and S4SL as providing an opportunity to engage in 3D modelling and programming without
existing 3D graphics or programming experience. Thus for the novice “you’re going from the concrete to the abstract. So you can basically start
off doing or using”.

Although existing knowledge of programming was not necessary, in one reflection a participant noted that without this past experience
they believed themselves to be at a disadvantage: “I know that some of the class were able to transfer previous programming experience to this
exercise and I badly lacked those terms of reference to transfer.” Despite this, most participants did not view a lack of programming knowledge
as limiting them; instead they viewed these amongst the skills they gained during the learning experience. It was also interesting to find that
none of the three experienced programmers interviewed used in the in-world programming or construction tools.

In both reflections and interviews learners described SLurtles as “engaging” and “fun” objects within Second Life andwhilst programming
themwas both “enjoyable” and “frustrating”, SLurtles engaged learners in thinking about the programming concepts they were using and
how to approach problem solving. as one interviewee said, “I think it got your head around the process of programming and what programming
is all about. it kind of got you into the frame of mind about the thinking that goes behind programming; that you need a lot of attention to detail
and you need things exactly right otherwise they won’t work.”

5.2.3. Barriers
The sub-category of ‘Barriers’ was comprised of two distinctive components: ‘limitations and constraints’ and ‘enablers’. ‘Limitations’

were distinct to ‘constraints’, as ‘limitations’ were perceived as preventing the learner from achieving their goals, whereas learners
described working with ‘constraints’ to achieve their goals. In addition, what one participant described as a limitation another might
describe as a constraint and therefore these codes were combined into one. ‘Enablers’ is used to describe low barriers or those objects, tools
or processes that allowed barriers to be lowered.
5.3. Limitations and constraints

Building in Second Life with or without SLurtles is not without its limitations and there was evidence that learners had expectations of
what they would and would not be able to achieve at the start of the learning experience based on their past experiences: “when I first came
into it I was thinking, it’s just like a drawing program. You’re drawing for continuous lines but you’re not. and then once you figure that out, you
kind of go well, actually, you can use this to your advantage ... once you get to that point you can do there’s lots of other interesting things you can
do that you wouldn’t have thought if it had just been a line drawing program. so in a way, it not being as you expected to be was a good thing
because it forced you to go in a completely different direction think in a completely different direction.”

During their initial explorations, learners discovered that “the SLurtle builds from the centre of the SLurtle so it is a bit difficult when you’re
trying to get it to turn a certain way, but it turns and it starts building from the centre of that block rather than the very side”. Whilst one
participant described this as a limitation, some described it as a constraint to be worked with, a challenge to problem solve and overcome,
whilst others did not identify it as a barrier.



C. Girvan et al. / Computers & Education 61 (2013) 115–132128
The number of blocks (prims) that each group could create using SLurtles was restricted due to a limitation within Second Life on the
number of prims that can be created on an island. Fig.14 shows individual SLurtle blocks highlighted in yellow (in theweb version), as part of
a larger construction. In both artefacts and interviews there was evidence of learners exploring, programming concepts such as loops
through the creation of objects with multiple blocks in them, however due to the prim limit learners often deleted these artefacts in favour
of less prim-heavy constructions. As a result, “to build a round tower, with doors and windows in it you actually need to create lots of bricks
which are in a circle, which went way over the prim counter to actually do it. Yeah, there were other ways of doing it, but prim count would be the
one thing that restricted you in that environment”.

Another barrier that several participants reported was the Second Life permissions system, whereby learners can share objects and the
contents of scripts. This was described as particularly problematic when collaborating in the scripting of a SLurtle. Some groups were able to
overcome this using the tools available to them in Second Life such as described by one interviewee: “shorthand descriptions of scripts ... typed
on the chat line or a texture showing an example was pulled into second life and displayed” (illustrated in Fig. 15 taken from the same learners’
reflection). However those that did not master the permissions system or an alternative approach found that, in the worst case, their
collaboration turned into two people working independently on the same project.

While many participants described SLurtles as enabling them to easily engage with building in Second Life and described S4SL as an
easy-to-use programming environment, “putting the script together wasn’t hard it was just knowing how to get that script and you know paste
it and open it and put it into the turtle and stuff like that, just trying to remember the sequence”. This skill-based task of transferring the script
from S4SL to the SLurtle was described as a barrier by two participants. With practice this was overcome, however it limited the ease with
which they could initially engage with the SLurtles.

Other features of Second Life which participants described in their interviews, but most often in their reflections, as limiting or con-
straining the learning experience included the text-based chat tools, voice in Second Life, and skills such as movement of the avatar and
camera controls. However some participants described that by engaging with the SLurtles they quickly overcame these barriers or they
became irrelevant: “Andwhat was interesting about the SLurtles and engaging with your own scripting control of something was, you’re suddenly
focused on something inside the environment, where the environment now becomes, goes into your peripheral sort of consciousness.”

5.4. Enabling

It is worth noting that despite the barriers imposed by Second Life, learners described SLurtles as providing them with a tool without
which “we wouldn’t have been able to build what we have built”. In one reflection a learner wrote about the ease at which he was able to use
the SLurtles to create objects. He described feeling like “a child with a new toy and I wanted to play. There was no need to read the instructions.”
Over time learners were able to achieve a high level of control and accuracy inwhat they created through S4SL and SLurtles by “just put(ting)
in exactly what youwant the SLurtle to do and it did the exact angles”. However, achieving this high level of control through their programming
skills was not easy.

Learners described an initial process of exploring what they could create with SLurtles before focussing on the creation of specific objects
for their assignment: “it was very interesting ... it was a bit of fun. ... Yes, I enjoyed themwhen I could do random stuff with them, and I thought oh
that’s good, that’s cool, but then when you had to start applying specific ideas, and get it to do this and that, erm, it became a bit more difficult”.
Fig. 14. Red brick house created using loops with two individual blocks highlighted in yellow. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)



Fig. 15. Using images to support collaboration.

C. Girvan et al. / Computers & Education 61 (2013) 115–132 129
in one reflection a learner described the lows and resulting highs “changing one script numerous times until the SLurtle did exactly what I asked
it to do. Sometimes it was frustrating but the sense of satisfaction when the SLurtle built a perfect house or a beautiful tree was worth all of the
frustration”.

6. Discussion

S4SL was created to lower the floor and allow learners to engage in programming in virtual worlds. However to engage in constructionist
learning experiences, learners also require a low-floor construction tool. Following the design of SLurtles, the pilot study reported in this
paper aims to answer the question:

� Do SLurtles provide learners with a pedagogical tool with which to engage in constructionist learning in virtual worlds?

In order to answer this question, four sub-questions were posed. The first sub-question focuses on whether or not SLurtles provided the
learners with a low-floor construction tool, which was the initial motivation behind the construction of SLurtles. The findings demonstrate
that SLurtles are easy-to-use construction tools without which learners stated they would not have been able to achieve such complex
artefacts. There was, however, an initial skill barrier described by some participants when transferring a script from S4SL to SLurtle and this
limited their initial engagement with SLurtles. Although there was only evidence of this from two interviews, it is unclear how many other
participants may also have experienced this barrier but not reported it. While this may raise the floor for initial engagement with SLurtles,
the creation of objects using the 3D object modelling tools in Second Life would, for novices, be a much higher barrier to entry.

Generic Second Life skills and tools were also identified as barriers, in particular avatar movement, camera controls, permissions and
communication tools. It is unclear from the findings as to what extent these limited engagement with SLurtles, however once learners
engaged in the use of SLurtles these barriers were quickly overcome or became irrelevant. These barriers suggest that theremay be some in-
world skills that learners need to successfully master in order to initially or fully engage with SLurtles, however there is insufficient data to
draw any firm conclusions on this.

The second and third sub-questions consider the high-ceiling andwide-wall concepts of constructionist tools in relation to SLurtles. Each
of the groups created very different installations, suggesting that SLurtles do support the wide-wall concept. Thereweremixed views on the



C. Girvan et al. / Computers & Education 61 (2013) 115–132130
complexity of the artefacts that could be created using SLurtles. While some considered S4SL or the type of SLurtle blocks limitedwhat could
be created, others viewed these aspects of SLurtles as enabling them to create complex artefacts.

The fourth sub-question explores the learners’ use of SLurtles as part of a constructionist learning experience. The SLurtle character, its
clear position and heading together with the blocks it created, provided learners with a focal point through which they were able to gain
feedback and reflect on their programmes. Learners were able to quickly engage in using the SLurtles to create objects and explore and test
their understanding through concrete constructions.

The limited variety of simple blocks was used to create a wide variety of artefacts of varying complexity, identified as personally
meaningful constructions. There was evidence that as constructions became more complex so did the programmes used for the
constructions. It is also interesting to note that there was no evidence of the experienced programmers using the in-world programming
tool, suggesting that S4SL provided a suitably high-ceiling programming environment with which to programme SLurtles. Due to the
persistent nature of the blocks, learners were able to share their artefacts during and after construction. This supported collaboration with
their partner and the wider class group.

Within the category ‘Thinking’ there is evidence of learners engaging in an experiential learning cycle (Kolb, 1984). Although Kolb’s
model is often critiqued, it provides a useful frame of reference to which the findings in the category of ‘thinking’ can be discussed. The
SLurtle’s movement, indicated by its clear position and heading, as well as the SLurtle blocks created, provided the learners with
a concrete experience which they could observe and reflect upon. This provided learners with an opportunity to reassess their code
asking questions of themselves and their partner including “why didn’t it work, or why did it work?” and comparing the outcome to the
original plan. This was followed by the redesign of the programme which was exported from S4SL into Second Life and implemented by
the SLurtle to provide the learner with a concrete experience. The full stages of this process, mapped onto Kolb’s model, are illustrated
in Fig. 16.

While Hoyles and Noss (2003) may argue that as the learners in this context are not engaged in a microworld they will lose the
psychological connection between the abstract code and the concrete output, the findings show that the learners described using SLurtles as
supporting the exploration and testing of their abstract understanding of programming through concrete constructions. However as S4SL is
currently unavailable within Second Life, the disconnect that may result from moving between two programmes could reduce the effec-
tiveness of SLurtles in supporting learners’ concrete experience. In addition it has the potential to diminish the sense of immersion
experienced by learners and the tools with which learners engage may not become ‘invisible’, an important feature of constructionist
learning experiences (Papert, 1980s, 1991).

The process of exporting the code from S4SL into the SLurtle was also identified as an initial skill barrier and demonstrates the lack of
‘bidirectionality’ (Hoyles et al., 2002) between code and SLurtle. While this lack of bidirectionality also supports the notion that this learning
context does not provide a microworld for learners, it is important to note that this was not the aimwhen developing SLurtles, but rather to
create a low-floor construction tool. To address these issues, further development of S4SL to provide a representation of the S4SL envi-
ronment in Second Life may be necessary.

Despite some limitations, SLurtles clearly supported learners’ creation of artefacts as they engaged in the constructionist learning
experience. While not easily achieved, learners began to explore more complex constructions over time. Exploring, testing and
extending their understanding they gained a high sense of satisfaction when they were able to programme the SLurtles accurately.
Fig. 16. The use of SLurtles mapped onto Kolb’s experiential learning model.



C. Girvan et al. / Computers & Education 61 (2013) 115–132 131
SLurtles engaged learners in thinking about programming by providing them with a programmable low-floor tool for the construction
of a wide variety of personally meaningful and shareable artefacts within the virtual world Second Life. Therefore the answer to the
main research question is yes, SLurtles provide learners with a pedagogical tool with which to engage in constructionist learning in
virtual worlds.

7. Conclusion

The initial motivation for creating SLurtles was due to the high-floor object construction tools currently available in virtual worlds
(Dickey, 2005; Sanchez, 2009) which may limit learners’ engagement with constructionist learning experiences in-world. This paper has
presented the design and pilot study of SLurtles as low-floor, programmable construction tools for use in the virtual world of Second Life.

The findings demonstrate that SLurtles provided learners with a low-floor programmable construction tool with which theywere able to
create a variety of complex artefacts. While initial constructions were easy, more complex constructions required more complex pro-
grammes andwith this came a sense of challenge, hard fun and achievement. Althoughmost learners had little or no previous programming
or virtual world experience, they were able to collaborate at distance to create complex artefacts with SLurtles.

The intention of this study was to pilot SLurtles, considering the floors, ceilings and walls which may constrain learners. While they are
shown to provide a low-floor, high-ceiling and wide-wall construction tool, much of the data is drawn from learners’ perceptions. Further
research is needed to understand the points at which the floor, ceiling andwalls stop and begin to limit what learners may achieve. This may
undertaken in comparison to other in-world tools or other constructionist environments such as Scratch. However the need for such
research also highlights a potential limitation in the discourse surrounding constructionist tools, that is how to measure floors, ceiling and
walls and whether these are comparable between tools. Within this paper it is not possible to engage in such a debate, however it is an issue
which needs to be clearly addressed by the field.

While SLurtles and S4SL may under-go further development to address the concerns highlighted in Section 5 and the barriers described
in Section 4, they have been found to provide a low-floor tool for the construction of objects in Second Life. Although designed for Second Life,
SLurtles have the potential to be used in a number of other virtual worlds developed through the OpenSim project. Although presented in
terms of Second Life, the design concepts behind SLurtles could also be implemented for the development of similar tools in other virtual
worlds such as Active Worlds.

With a low-floor programmable construction tool, SLurtles are currently being implemented in further work which aims to develop an
understanding of constructionism in virtual worlds. In particular this work explores the public nature of construction, the role of avatars and
barriers to engagement.

In Mindstorms, Papert (1980) advocated “the construction of educationally powerful computational environments that will provide
alternatives to traditional classrooms and traditional instruction” (p.182).With SLurtles providing the low-floor programmable construction
tool with which learners can engage in constructionist learning activities, virtual worlds may provide such an educationally powerful
computational environment.

Role of the funding source
The funding sources have had no impact on the study, the writing of the report or the decision to submit the paper for publication.

Acknowledgements

The authors would like to thank members of the Centre for Research in IT in Education, Trinity College, University of Dublin for their
support during this work as well as the reviewers for their helpful suggestions. The authors also wish to acknowledge the funding provided
through the ‘Embark Initiative’ of the Irish Research Council for Science Engineering and Technology.

References

Ackerman, E. (2004). Constructing knowledge and transforming the world. In M. Tokoro, & L. Steels (Eds.), A learning zone of one’s own: Sharing representations and flow in
collaborative learning environments (pp. 15–37). Oxford: IOS Press.

Ackerman, E., & Strohecker, C. (1999). Build, launch, convene: Sketches for constructive-dialogic learning environments. MERL – a Mitsubishi Electric Research Laboratory,
Retrieved 25.10.09, from. http://www.merl.com/papers/TR99-30/.

Andreas, K., Tsiatsos, T., Terzidou, T., & Pomportsis, A. (2010). Fostering collaborative learning in second life: metaphors and affordances. Computers & Education, 55(2), 603–615.
Dalgarno, B., & Lee, M. J. W. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41(1), 10–32.
Dalgarno, B., Lee, M. J. W., Carlson, L., Gregory, S., & Tynan, B. (2011). An Australian and New Zealand scoping study on the use of 3D immersive virtual worlds in higher

education. Australasian Journal of Educational Technology, 27(1), 1–15. http://www.ascilite.org.au/ajet/ajet27/dalgarno.html.
Dickey, M. D. (2005). Brave new (interactive) worlds: a review of the design affordances and constraints of two 3D virtual worlds as interactive learning environments.

Interactive Learning Environments, 13(1–2), 121–137.
Dreher, C., Reiners, T., Dreher, N., & Dreher, H. (2009). Virtual worlds as a context suited for information systems education: discussion of pedagogical experience and

curriculum design with reference to second life. Journal of Information Systems Education, 20(2), 211–224.
Edwards, L. D. (1998). Embodying mathematics and science: microworlds as representations. Journal of Mathematical Behaviour, 17(1), 53–78.
Gee, J. P. (2003). What video games have to teach us about learning literacy. New York: Palgrave Macmillan.
Girvan, C., & Savage, T. (2010). Identifying an appropriate pedagogy for virtual worlds: a communal constructivism case study. Computers & Education, 55(1), 342–349.
Girvan, C., & Savage, T. (2012). Ethical considerations for educational research in a virtual world. Interactive Learning Environments, 20(3), 239–251.
Hatch, J. A. (2002). Doing qualitative research in educational settings. Albany: State University of New York Press.
Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in mathematics education? In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, &

F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 323–349) Dordrecht: Kluwer Academic Publishers.
Hoyles, C., Noss, R., & Adamson, R. (2002). Rethinking the microworld idea. Journal of Educational Computing Research, 27(1), 29–53.
Jarmon, L. (2009). Pedagogy and learning in the virtual world of second life. In P. Rogers, G. Berg, J. Boettcher, C. Howard, L. Justice, & K. Schenk (Eds.), Encyclopaedia of distance

and online learning (2nd ed.). (pp. 1610–1619) Hershey, PA: IGI Global.
Johnson, C. M., Corazzini, K. N., & Shaw, R. (2011). Assessing the feasibility of using virtual environments in distance education. Knowledge Management & E-Learning: An

International Journal, 3(1), 5–16.
Kirriemuir, J. (2010). Virtual world activity in UK universities and colleges (Spring 2010). Accessed on 26.09.10 from. http://virtualworldwatch.net/wordpress/wp-content/

uploads/2010/05/Snapshot-8.pdf.

http://www.merl.com/papers/TR99-30/
http://www.ascilite.org.au/ajet/ajet27/dalgarno.html
http://virtualworldwatch.net/wordpress/wp-content/uploads/2010/05/Snapshot-8.pdf
http://virtualworldwatch.net/wordpress/wp-content/uploads/2010/05/Snapshot-8.pdf


C. Girvan et al. / Computers & Education 61 (2013) 115–132132
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ: Prentice-Hall.
Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch: a sneak preview. In Y. Kambayashi, K. Tanaka, & K. Rose (Eds.), Proceedings of the second

international conference on creating, connecting, and collaborating through computing (pp. 104–109). Kyoto: Kyoto University.
Merriam, S. B. (1998). Qualitative research and case study applications in education. San Francisco: Jossey-Bass.
Minocha, S., & Roberts, D. (2008). Laying the groundwork for socialisation and knowledge construction within 3D virtual worlds. ALT-J, 16(3), 181–196.
Norman, D. A. (1999). Affordances, conventions, and design. Interactions, 6(3), 38–43.
Paliokas, I., Arapidis, C., & Mpimpitsos, M. (2011). PlayLOGO 3D: a 3D interactive video game for early programming education: let LOGO be a game. In Proceedings of games

and virtual worlds for serious applications (VS-GAMES), 2011 third international (pp. 24–31), 4–6 May 2011.
Papert, S. (1972) On making a theorem for a child. In Proceedings of the ACM annual conference (pp. 345–349), August 1972, Boston, Massachusetts, United States.
Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. New York: Basic Books.
Papert, S. (1980s). Constructionism vs. instructionism. Retrieved 10.01.08, from. http://papert.org/articles/const_inst/const_inst1.html.
Papert, S. (1991). Situating constructionism. In I. Harel, & S. Papert (Eds.), Constructionism (pp. 1–14). Hillsdale, NJ: Lawrence Erlbaum Associate.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastwood, E., Brennan, K., et al. (2009). Scratch: programming for all. Communications of the ACM, 52(11), 60–67.
Robertson, J., & Kipar, N. (2010). Learning together and alone in virtual worlds. In K. Sheehy, R. Ferguson, & G. Clough (Eds.), Virtual worlds: Controversies at the frontier of

education (pp. 67–84). New York: Nova Science Publishers.
Rosenbaum, E. (2008). Scratch for second life. In S. Veeragoudar Harrell (Chair & Organizer), Virtually there: Emerging designs for STEM teaching and learning in immersive online

3D microworlds. Symposium in proceedings of the international conference on learning sciences – ICLS 2008. Utrecht, The Netherlands: ICLS. Abstract retrieved 01.02.10, from
http://www.fi.uu.ul/en/icls2008/144/paper144.pdf.

Salmon, G. (2009). The future for (second) life and learning. British Journal of Educational Technology, 40(3), 526–538.
Sanchez, J. (2007). Second life: an interactive qualitative analysis. In C. Crawford, et al. (Eds.), Proceedings of Society for Information Technology and Teacher Education inter-

national conference 2007 (pp. 1240–1243). Chesapeake, VA: AACE.
Sanchez, J. (2009). Barriers to student learning in second life. Library Technology Reports, 45(2), 29–34.
Savin-Baden, M. (2008). From cognitive capability to social reform? Shifting perceptions of learning in immersive virtual worlds. ALT-J, 16(3), 151–161.
Stake, R. E. (1995). The art of case study research. London: Routledge.
Tuckman, B. W. (1994). Conducting educational research. London: Harcourt Brace College Publishers.
Warburton, S. (2009). Second life in higher education: assessing the potential for and the barriers to deploying virtual worlds in learning and teaching. British Journal of

Educational Technology, 40(3), 414–426.
Yeh, A. (2010). Three primary school students’ cognition about 3D rotation in a virtual reality learning environment. In L. Sparrow, B. Kissane, & C. Hurst (Eds.), Shaping the

future of mathematics education: Proceedings of the 33rd annual conference of the Mathematics Education Research Group of Australasia. 3–7 July 2010, Fremantle, Western
Australia. MERGA.

Yeh, A. J., & Nason, R. A. (2004). VRMath: a 3D microworld for learning 3D geometry. In Proceedings of world conference on educational multimedia, hypermedia & telecom-
munications, 21–26, June 2004, Lugano, Switzerland.

Yin, R. K. (2009). Case study research: Design and methods. Thousand Oaks, CA: Sage.

http://papert.org/articles/const_inst/const_inst1.html
http://www.fi.uu.ul/en/icls2008/144/paper144.pdf

	SLurtles: Supporting constructionist learning in Second Life
	1. Introduction
	2. Background
	2.1. Virtual worlds
	2.2. Constructionism in virtual worlds
	2.3. Low-floor constructionist tools

	3. SLurtle design
	3.1. Design influences
	3.1.1. Turtle graphics
	3.1.2. Lego®
	3.1.3. Scratch for Second Life (S4SL)
	3.1.4. Persistence

	3.2. SLurtles: design concepts and implementation
	3.3. Walk-through

	4. Method
	4.1. Participants and activity design
	4.2. Research design and procedures
	4.3. Data analysis

	5. Findings
	5.1. SLurtle design
	5.2. Constant comparative analysis
	5.2.1. Thinking
	5.2.2. Programming
	5.2.3. Barriers

	5.3. Limitations and constraints
	5.4. Enabling

	6. Discussion
	7. Conclusion
	Role of the funding source
	Acknowledgements
	References


