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Editorial 

 

Janet Taylor 

University of Southern Queensland,  

Toowoomba, Queensland, Australia 

<taylorja@usq.edu.au> 

 

 

 

Welcome again to Adults Learning Mathematics — An International Journal. In this issue we 

celebrate the diversity of research into the mathematics learning of adults with 4 papers from 3 

different countries. The first two papers from Ireland look at two facets of Irish mathematics 

education. The first paper by Olivia Gill and John O‟Donoghue takes on a journey through the 

teaching and learning practices within university service mathematics courses. They have used 

Brousseau‟s concept of didactical contract to uncover implicit contracts present in Irish 

university classrooms. This paper is an early step in their characterisation of service 

mathematics in Irish universities and we look forward to more work from these authors on this 

topic. 

 

The second paper from Ireland is about commonsense and mathematics and is a consolidation 

of Noel Colleran‟s and John O‟Donoghue‟s earlier work. They discuss the perceived divide 

between commonsense and mathematics understanding with some examples of it in practice. 

The challenge, they say, is for us as educators to cultivate learning environments which will 

enable students to draw on their commonsense resources to build mathematics commonsense.  

 

Jeff Evans, Anna Tsatsaroni and Natalie Staub, take us on a very different journey into the 

world of advertising and films in their paper on the images of mathematics in popular culture. 

Their work is underpinned by the relationships between motivation, beliefs, attitudes and 

emotions about mathematics. In the instances examined in this paper the images of mathematics 

in advertisements were generally negative while those in films were ambivalent. Of particular 

interest will be the discussion of the images create by the artefacts of people doing, using and 

teaching mathematics and their relevance to today‟s market economy societies. 

 

The final paper takes us on a journey to Brazil and the Landless Movement. In her paper Gelsa 

Knijnik, unpacks the notion of ethno mathematics within the context of Brazilian peasants to 

support her ideas about different „mathematics‟. The paper has rich examples of the 

mathematics produced by the Landless peasant form of life and Gelsa discusses the interplay 

between their mathematics and school mathematics. 

 

The work of ALM cannot continue without the fine work of its members, many of whom have 

contributed unreservedly by reviewing the above papers. Their professionalism is valued by 

myself and the Editorial team. Of course this issue would not be published without the ongoing 

assistance and support of this editorial team: Mieke van Groenestijn and Juergen Maasz.  

 
In my final words I would like all ALM members to consider publishing a paper or two in their 

journal, so that the collegiality and international flavour of the journal will continue to grow. 
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Abstract 

In this paper the authors report on a qualitative investigation into service mathematics carried 

out in Irish universities against a backdrop of major concerns nationally and internationally 

embodied in the so-called “Mathematics problem‖. The enquiry involved a close inspection of 

how service mathematics is perceived, planned, delivered, evaluated, assessed and experienced 

by both lecturers and students in selected service mathematics courses in all seven Irish 

universities. Murphy (2002) used Brousseau‟s concept of didactical contract to uncover the 

implicit contract present in Irish second level classrooms. The authors emulated this work to 

discover the hidden learning contract in university service mathematics lectures in Ireland. 

Major outcomes of the study include insight into the nature of the didactical contract at work in 

the service mathematics courses surveyed, and the development of a preliminary 

characterisation of service mathematics in Irish universities. Service mathematics is also an 

issue for adult mathematics education and impacts on it.  

 

Keywords: university mathematics, first year, pre-requisite knowledge 

 

 

Introduction 

It is generally acknowledged that adult mathematics education (AME) is not well 

conceptualised in the research literature. However, there has been progress in this regard as 

evidenced in the work of researchers, such as, Coben (2006), FitzSimons, Coben and 

O‟Donoghue (2003) and Wedege, Benn and Maa (1999). Indeed, it is clear from the work of 

FitzSimons et al. (2003) that a broad view of adult mathematics education is accepted and 

includes, inter alia, ”specialized mathematics and service mathematics (as in higher education), 

school mathematics, vocational mathematics― (p. 117). 

 

The authors, who are based in the Mathematics Learning Centre (MLC) at the University of 

Limerick (UL) have a deep professional stake in service mathematics. Service mathematics is 

one of those crossover areas between mathematics, mathematics education and adult 
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mathematics education and is grossly under-theorised and under-conceptualised. As researchers 

in AME we should be engaged in service mathematics research for the following reasons: 

 It is identified as being under the umbrella of AME; 

 It is under-theorised and under-conceptualised; 

 Elucidation of the nature of service mathematics and its practices can contribute to 

improvements in AME; 

 Considerable numbers of adults engage in service mathematics courses around the world 

having entered through a variety of routes (e.g. as adult returners, mature students entering 

via successful Access, Bridging or Transition programmes, direct mature student entry); 

 Service mathematics is an academic environment that needs to be better understood because 

it impacts on significant numbers of adult learners. 

 

The importance of service mathematics for AME is captured and highlighted by the situation at 

the University of Limerick which is by no means unique in this regard. Adult learners of 

mathematics (e.g. mature students, access students) comprise a significant group of the student 

service mathematics population in the University. Fifty-one mature students were admitted to 

first year undergraduate programmes in 1999-2000 and this number rose to 155 in 2004-5. A 

total of 474 mature students were registered in UL in 2004-05 (Callaghan, 2005). This number 

rose to 614 in the subsequent academic year (Coveney O‟Beirne, 2006). Most degree 

programmes in UL (with the exception of the humanities) contain some mathematics modules, 

so many of these mature students will have mathematics throughout their study. 

 

The UL Mathematics Learning Centre provides support for all students participating in 

mathematics intensive courses. A drop-in facility is available for 22 hours a week and support 

tutorials are provided for any mathematics modules where students encounter difficulties. In the 

larger of these groups, mature students are provided with their own support tutorials. In 2005-6 

143 mature students attended support tutorials provided by the Mathematics Learning Centre 

specifically for mature students. One hundred and eighteen tutorials (44% of all support 

tutorials) were provided and a total of 909 attendances were recorded. Thirty-seven percent of 

attendances at support tutorials were by mature students. They represent 22.3% of all students 

participating at these tutorials. Many mature students also attended the drop-in facility provided 

by the centre but numbers for this are not available. 

 

The study reported in this paper involved a close inspection of how service mathematics is 

perceived, planned, delivered, evaluated, assessed and experienced by both lecturers and 

students in selected service mathematics courses in all seven Irish Universities. Murphy (2002) 

used Brousseau‟s concept of didactical contract to uncover the implicit contract present in Irish 

second level classrooms. The authors emulated this work to discover the hidden learning 

contract in service mathematics courses in Irish universities. Major outcomes of the study 

include insight into the nature of the didactical contract at work in the service mathematics 

courses surveyed, and the development of a preliminary characterisation of service mathematics 

in Irish universities.  

 

The study reported in the following paragraphs is one of three unique studies (in the Irish 

context) that were conducted by Gill (2006) between 2001 and 2006. The study was conducted 

against the backdrop of the so-called Mathematics problem in Ireland and treats service 

mathematics as an embodiment of the problem in Ireland. This paper elucidates the problem, 

describes the study including methodology, data collection and analysis, and summarises the 
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findings with a special focus on the didactical contract in service mathematics courses and the 

nature of service mathematics. 

 

The Mathematics problem 

The so-called Mathematics problem as it is styled in the United Kingdom (UK) research on 

mathematics education encompasses issues in the transition from school mathematics to 

university service mathematics and beyond. The Mathematics problem and variants of the 

problem in western societies have been the subject of widespread debate and concern 

internationally at a time when there has been a major debate on mathematics education at all 

levels (e.g. NCCA, 2005; Smith, 2004; PISA, 2003; Engineering Council, 2000; TIMMS, 1997; 

IMA, 1995; LMS, 1995; NCTM, 1991). 

 

At present there is widespread concern among university academics in many countries (e.g. 

Australia, United Kingdom) about the poor level of mathematical preparedness of first year 

undergraduates in mathematics intensive courses. Research shows also, that the problem is not 

just that some students are under-prepared but that even students with good School Leaving 

Certificate/A-Level grades struggle with even the most basic aspects of mathematics (NCCA, 

2005; LMS, 1995).  

 

Added to this problem is the fact that many believe that not only are students under-prepared, 

but that there is also a decline in standards in school mathematics. In this regard, for example, 

there is evidence based on a study of data at Coventry University from 1991 to 1995 to suggest 

that there has been some grade dilution over those years for students entering university (Hunt 

& Lawson, 1996). There are concerns that this under-preparedness will have serious short and 

long-term consequences not only for individual students (i.e. failure and dropping out 

(O‟Donoghue, 1999)) but also for the professional reputation of various universities and for the 

economic progress of a country (Flynn, 2005; LMS, 1995). There are fears in the UK that a 

drop in the level of the mathematical proficiency of undergraduates will lead to them falling 

behind their peers in other countries and, as a result, the country itself will have to rely on others 

for inventions and developments (Smith, 2004; LMS, 1995). 

 

The Mathematics Problem in Ireland 

A collection of descriptions of the Mathematics problem has been assembled in Ireland by 

O‟Donoghue (2004) and includes the following: 

  

 Mathematical shortcomings of entering students; 

 Mathematical deficiencies of entering students; 

 Pre-requisite mathematical knowledge and skills; 

 Mathematical preparedness/under-preparedness; 

 Mathematics at the school/university interface; 

 Issues in service mathematics teaching; and 

 Numeracy/Mathematical literacy. 

 

These are overlapping descriptions and for the purposes of this research the authors focus on 

issues in service mathematics teaching and the impact of the Mathematics problem on adults 

learning mathematics in Irish universities. 
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The problem of mathematical under-preparedness has been reported throughout the higher 

education sector in Ireland over many years with reports from universities and institutes of 

technology (Cork Regional Technical College, 1985; Hurley & Stynes, 1986; O‟Donoghue, 

1999). The concern for a drop in standards and inadequate preparation extends as far back as 

1984 when research carried out in Cork Regional Technical College (Cork RTC) drew attention 

to the problem of the poor mathematical grounding of their first year students. The authors 

concluded that the incoming undergraduates were deficient in basic mathematics. In the 

following year, Hurley and Stynes (1986) carried out a similar investigation in University 

College Cork (UCC) with comparable results: their first year students demonstrated poor 

articulation of basic prerequisite mathematical knowledge. 

 

Also in the late 1980‟s in the National University of Ireland at Maynooth (NUIM) and more 

recently in Dublin City University (DCU), it became apparent that students were having the 

same difficulties in mathematics as students elsewhere in Ireland. Academic staff initiated 

diagnostic testing to establish where the weaknesses lay and continue this process to the present 

day. 

 

Due to mounting concern in the Department of Mathematics and Statistics at the University of 

Limerick (UL), a study entitled An Intervention to Assist ‗At Risk‘ Students in Service 

Mathematics at the University of Limerick was undertaken to gauge the degree of mathematical 

under-preparedness of first year undergraduate students in mathematics intensive courses. 

Mathematics lecturers complained that students displayed: 

 Lack of fluency in basic arithmetic and algebraic skills; 

 Gaps (or in some cases absence of) in basic prerequisite knowledge in important areas of the 

school syllabus e.g. trigonometry, complex numbers, differential calculus; and 

 An inability to use or apply mathematics except in the simplest or most practised way 

(O‟Donoghue, 1999, p. 3). 

 

A pilot study (O‟Donoghue, 1999) carried out in 1997-8 suggested that up to 30% of incoming 

students were at risk and would need supplementary help to complete first year successfully. 

Evidence from this study and a similar study carried out the following year convinced the author 

that the problem would persist and take on a permanent disposition. This is particularly 

pertinent in the area of adult mathematics education as many of these students were mature, had 

not studied mathematics for many years and had presented with significant gaps in their 

mathematical knowledge. 

 

Many reasons have been put forward to elucidate why things have gone wrong or why this state 

of affairs in mathematics education exists in Ireland. These include: 

 Government policy; 

 The Points system for entry to higher education; 

 Changes in the Irish second level system; and 

 Large class size in higher education institutes. 

 

The existence of the Mathematics Problem was one of a number of contributing factors leading 

to the establishment of a Mathematics Learning Centre at the University of Limerick in 2001. 

Since then the Centre has been active in the support of students, including adults engaged in 

service mathematics, and in researching issues in this area. 
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Some conceptions of service mathematics 

Although service mathematics has not been formally defined in the literature, we presuppose 

that it refers to degree courses where mathematics plays a part, be it small or large, but is not the 

main focus of the students‟ studies. The organisation of mathematics teaching/education in the 

Irish higher education sector can be seen in Figure 1. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Mathematics Teaching in Higher Education (O‟Donoghue, 2002) 

 

 

Throughout this paper, the authors distinguish between mathematics specialist students and 

service mathematics students. Those pursuing careers/degree courses in mathematics fields are 

referred to as mathematicians and mathematics specialist students. 

 

While it was once the case that service mathematics solely referred to engineering mathematics, 

this is no longer true. Chevallard (1989, p. 52) stated “… the empire of mathematics is steadily 

spreading and keeps encroaching on domains which until recently had remained foreign to its 

influence”. Today, all professions have varying requirements for the knowledge and use of 

mathematics skills, with O‟Donoghue (1999) correctly predicting that in the 21
st
 century 

professionals would require higher levels of mathematical proficiency than ever before. 

 

Kent and Noss (2001) ask the question: what is mathematical knowledge? There are, they claim, 

different perceptions depending on the domain of each profession (i.e. science, engineering). 

They indicate that this occurs because each person sees a different purpose for mathematics, one 

that is relevant to their own particular realm. For example, the IMA (1995) assert that 

engineering mathematics is not simply pure mathematics taught to engineers, but that the 

mathematics syllabi must be constructed and taught within an engineering context. However, it 

is clear that service mathematics is not an inferior form of mathematics. Howson, Kahane, 

Lauginie and de Turckheim (1987) emphasise the point, stating that the term service 

mathematics does not connote a lesser form of mathematics. They refer to it as “…mathematics 

in its entirety, as a living science, able - as history has ceaselessly show - to be utilised in, and to 

stimulate unforeseen applications in varied domains” (Howson et al., 1987, p. 1). 
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A qualitative study of service mathematics in Irish universities  

The purpose of the study was to examine the context, the practice and experience of service 

mathematics teaching in Irish universities (Gill, 2006). No such study has ever been undertaken 

in Ireland. Consequently, the findings constitute a significant source of new data on service 

mathematics teaching in Ireland and serve as a basis for developing a meaningful 

characterisation of service mathematics in Irish universities today. The study aims to define 

more clearly the teaching/learning contract that exists between the actors in this sphere of 

activity using the concept of “Didactical Contract” as developed by Brousseau (Balachef. 

Cooper, & Sutherland, 1997). 

 

In Brousseau‟s theory an implicit contract exists within every mathematics classroom between 

all actors in the sphere. Students are presented with mathematical tasks/problems by their 

teacher/lecturer. The students are required to work on the tasks whilst adhering to various 

constraints governed by the teacher/lecturer and the learning environment. The expected 

behaviours of the students from their teacher/lecturer and vice versa determine the didactical 

contract present in the classroom. Brousseau proposed that this contract has a significant impact 

on the teaching and learning that occurs in the class (Balachef et al., 1997). 

 

Methodology 

Qualitative non-participant observation was selected as the most appropriate strategy for data 

collection (Cohen, Manion & Morrison, 2000). This choice was influenced by the authors‟ need 

to gain an holistic insight into service mathematics teaching including mathematics lectures, 

tutorials and programmes in the world of Irish higher education. Brousseau‟s exhortation that an 

in-depth study of the routine happenings is the only way to establish the contract was also a 

major consideration. The study was guided by the following research questions: 

 

 How is service mathematics perceived by lecturers and mathematics departments? 

 How is service mathematics organised, planned and implemented? 

 How is service mathematics taught? 

 How is service mathematics assessed and evaluated? 

 How do lecturers and students experience service mathematics?  

 

Data collection instruments 

The analysis presented is based on direct observations of classroom practice in each of Ireland‟s 

seven universities, and semi-structured interviews with experienced mathematics lecturers 

involved in service mathematics teaching. A purposive sample of lecturers, students and courses 

was used as explained below. 

 

The method of inquiry was characterised by a multi-pronged approach involving both staff and 

students. Service mathematics lecturers from each of the seven Irish universities were 

approached in February, 2005 and asked to participate in the investigation. Selection was based 

on whether they taught first year service mathematics courses in the second half of the academic 

year. The lecturers (9) who replied and agreed to participate were the ones selected. The author 

first collected course documentation on each of the service mathematics courses in Irish 

universities to analyse their content. The selected lecturers were asked to: 
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 Complete a questionnaire (by e-mail); 

 Participate in a semi-formal interview; and 

 Allow structured observations of a typical mathematics lecture.  

 

The participation of all lecturers extended the scope of study from University of Limerick 

experience (Science, Engineering and Technology) to all seven Irish universities and to include 

Arts, Commerce and Business Studies. 

 

Once the initial lecturer-based investigation was complete, participating lecturers were 

approached for permission for the researchers to interview students on their courses and to 

observe some tutorial sessions. As some universities were approaching examinations/holidays at 

this stage of the process, this phase was conducted in only four of the original seven 

universities. Twelve (12) students in total volunteered to take part in interviews. The researcher 

also completed a journal of reflections after every lecture/tutorial observed.  

 

All interviews were recorded and later transcribed for analysis. Data collected from interviews 

with lecturers and students, and from the lecture/tutorial observations were coded to distinguish 

between student-generated and lecturer-generated data. These data were subsequently analysed 

using the constant comparative method (Glasser & Strauss, 1967; Miles & Huberman, 1994). 

 

Data analysis – the lecturers 

Interview questions were based on current literature and authors‟ experiences in service 

mathematics courses and aimed to explicitly explore the behaviours lecturers may expect from 

their students. Such questions aimed to fully establish the didactical contracts within lectures. 

They were deemed essential by the authors in order to gain insight into what lecturers believed 

to be the nature of service mathematics e.g. mathematics for engineers, mathematics for 

scientists, applied mathematics or mathematics especially construed as service mathematics. For 

example, Howson et al. (1987, p. 1) suggest that the term service mathematics refers to 

“mathematics in its entirety‖. Consequently, it should be possible to devise an apt, authentic 

curriculum for these students (Kent & Noss, 2001). It is crucial to examine how seriously 

service mathematics is treated within mathematics departments and client departments, how it is 

planned, implemented, assessed and evaluated. 

 

Data analysis – the students 

The 12 student interviewees (5 male, 7 female) were all first year university students of 

approximately 18 years of age. Mature or foreign students were not considered, as issues of 

transition from Irish second level were the principle research questions. However, issues that 

arise out of this analysis will impact significantly on adult learners. The student interviewees 

were enrolled in various degree courses which had a mathematics element such as Science, 

Commerce and Business Studies. Two students were studying an Arts degree and had elected 

mathematics as one of their first year subjects. Some of the students were interviewed 

individually, while others were interviewed in pairs or threes. Each interview took place at the 

end of the lecture/tutorial and lasted about 10 minutes. The potential bias was that the students 

interviewed were the ones who actually attend their tutorials. It was not possible to interview 

students who did not attend class. 
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Summary of findings  

One of the findings from the qualitative study is that service mathematics is viewed as a very 

important enterprise within Irish universities for financial/staffing, political and educational 

reasons. Five of the universities have coordinators to facilitate the preparation and delivery of 

service mathematics courses. It is a significant role to be filled as they have a number of 

important duties to fulfil. 

 

The lecturers interviewed stated that all students should have a good mathematics education and 

it is their job to provide it. It was disheartening to see that over half of the lecturers interviewed 

still viewed the teaching of mathematics students as a higher priority than service mathematics 

students. 

 

The lecturers indicated that they perceive service mathematics as mathematics for students not 

doing mathematics degrees. This marginally negative perception is interesting because it shows 

that lecturers understand that students see service mathematics as something that is not chosen 

for its own sake as a path to some career. Superficial definitions were given to explain how the 

lecturers characterise service mathematics.  

 

Mathematics lecturers prepare service mathematics syllabuses in conjunction with the client 

departments. The client departments decide what they would like their students to know and the 

mathematics departments tailor courses to suit their requirements. Apart from the client 

departments (and the external examiners) there is no external input into course design. Industry 

and prospective employers are a potential source of input but are not exploited. This runs 

contrary to accepted practice espoused by earlier researchers such as Bajpai (1985) who 

advocated industry involvement in course design. The aims and objectives for the service 

mathematics courses are outlined in the course documentation. They infer that service 

mathematics courses are technique/application based as opposed to theory-based courses. The 

level of rigour is not, rightly or wrongly, as deep as that in mathematics specialist courses. The 

lecturers interviewed stated that the general gist would do for their service mathematics students 

and they do not attempt to get them to really grapple with the concepts involved. This is 

worrying in the context of what other researchers (e.g. Howson et al., 1987) have to say about 

service mathematics as not being inferior mathematics. However, Mason (2001) cautions 

against an overly theoretical approach. 

 

The students in these courses are required to have attained a pass (C3 for some, B3 for others) in 

Ordinary Level Leaving Certificate mathematics (Irish School Leaving Certificate is offered at 3 

levels in mathematics: Higher, Ordinary and Foundation) to gain entry to these courses with the 

exception of the Engineering degree courses who require a grade C3 or higher at Higher Level 

Leaving Certificate mathematics. As these are the minimum entry requirements, the 

mathematical abilities/knowledge of students vary to a great extent, as many groups will have 

students with anything from an Ordinary Level C3 up to a Higher Level A1. In addition, there 

are transferees, foreign students and mature students. Many of the latter have not studied 

mathematics for many years and some have not even sat the Leaving Certificate examination at 

all. Class size and the diverse mathematical backgrounds of students negatively impact the 

lecturers and students. The smallest service mathematics group observed/surveyed had 50 

students enrolled. The rest contained between 100 to 400 students. The lecturers interviewed 

admitted that it was more difficult to get to know students and monitor their progress as a result 

of the class sizes. It inhibited their teaching and led to chalk and talk styles of lecturing. They 

seemed despondent about this situation but accepting of it. There was a distinct lack of 
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interaction, group work and discussion within these lectures as lecturers felt it was not feasible 

and students feel too intimidated to do anything other than passively participate. 

 

The use of relevant, real-life examples was something that was absent from the lectures 

observed. It would not be possible for an observer to tell if some of the classes were for 

engineers or scientists unless they were informed so. Time constraints were partially blamed for 

this while some lecturers said it was very difficult to always give relevant examples from 

everyday life. As a result, students participate in mathematics lectures which they have not 

chosen to study without being given clear reasons why. The use of appropriate examples from 

science, engineering and technology is strongly advocated by IMA (1999), Kelly (1994) and 

Ahmad, Appleby and Edwards (2001). 

 

Observations revealed that students passively participate by listening and taking notes. There 

were very few opportunities for group work or discussion with the result that there was very 

little interaction within lectures. Class size was the main reason given for lack of interaction and 

questioning. Lecturers do not like to intimidate students and students are too shy to speak up in 

class even if they do not understand something. Very little questioning took place in the lectures 

observed. The students admitted that they would not ask questions in class. Lecturers rarely 

asked questions either. A few questions were “tossed out” by lecturers at the groups observed. 

There were no individual questions. The students interviewed for this study indicated that their 

attitudes to mathematics were once positive but are now neutral and, at times, negative. This 

implies that mathematics has been an unsatisfactory experience for them thus far in higher 

education. 

 

Tutorials were taught by teaching assistants/tutors or, sometimes, by fourth year students. The 

lecturers stated that tutorial/homework materials were a combination of technique-based and 

applied problems based on material covered within the lectures. It was left at the assistants‟ 

discretion how best to teach the tutorials. Lecturers tried to make examples as relevant as 

possible to core areas but often found this difficult. Tutorials were seen as an opportunity to 

practice skills taught within lectures. They were also seen by students as an opportunity to pick 

up on material they had missed/misunderstood/not understood within lectures. They felt more 

comfortable approaching tutors than lecturers. The students admitted that they did not do 

enough independent study outside of lectures and tutorials. Attending tutorials offered students 

the chance to practice the mathematics they may or may not have the confidence or knowledge 

to attempt on their own.  

 

Assessment varied from university to university. Students were assessed by either continuous 

assessment methods or one final end of term/year examination. The lecturers interviewed said 

that they were somewhat focused on the final examination but they did not go out of their way 

to teach to it. Still, some of these groups have final examinations that worth 100% of the 

assessment mark so this, in addition to their second level experience and its emphasis on the 

Leaving Certificate examination (Murphy, 2002), leads students to focus more on passing the 

examination than on understanding the mathematics. The students interviewed stated that they 

relied on previous examination papers to prepare for their next examination. It was possibly the 

shortest route to getting through the examination as none stated that they referred to textbooks, 

online support or drop-in centres as an aid to their learning. 

 

It was evident that there was a clear mismatch in expectations and delivery within these 

classrooms and one that could contribute further to the problems within service mathematics 

teaching and learning. Lecturers expected students to attend, listen, behave and think. They also 
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expected them to take responsibility for their own learning. Students had great difficulty taking 

this responsibility on board. The transition to third level education was seemingly a substantial 

hurdle for students as attendance and participation rates were poor. It is the students‟ 

responsibility to attend lectures and tutorials, but it may be more than laziness or indifference 

that stops them from going. They seemed to expect certain things from their lecturer e.g. extra 

office hours, but then do not take advantage of them. The lecturers said that they do not expect 

very much of their students as regards classroom etiquette and participation. 

 

 

Discussion of findings 

 

Observations on the nature of the didactical contract in service mathematics in 

Irish universities 

As stated, one of the purposes of this study was to determine the nature of the didactical 

contract within service mathematics classes in Irish universities: to see if, where and why there 

are mismatches in expectations. It is clear that there are many such mismatches evident in the 

data from within these groups. 

 

Lecturers expect students to attend lectures and tutorials yet, attendance is a problem in these 

universities. While in class the students are expected to behave, listen and think. Questions are 

welcomed from students but not expected or encouraged because of large numbers within the 

service mathematics groups. Lecturers do not ask individual questions but on occasion they do 

ask some questions to the group as a whole. Students are compliant with this. Thus large classes 

are taught in traditional ways where student attitudes towards their task are less then ideal. This 

finding echoes Simons (1987) and more recent work by Crawford, Gordon, Nicholas, and 

Prosser (1994) and MacBean (2004). However, students feel more comfortable asking questions 

in tutorials and sorting out their problems there. This is the one area where students and 

lecturers have the same expectations of each other. Students expect not to be asked questions 

and lecturers do not ask them. Some form of intervention is needed to encourage attendance and 

participation rather than just accepting that this is the way it is. Maybe if expectations were 

more obvious at the start of the academic year, everyone would be enlightened as to their own 

contribution to the service mathematics experience. 

 

There are few opportunities for students to practice their mathematics within lectures because of 

time constraints and because the lecturers expect students to do some independent work of their 

own outside of class. Students, however, expect time, opportunities and plenty of examples to 

practice. They expect the lecturer to explain everything in detail, as practiced inn secondary 

school. Having spent 5 years experiencing teaching of this form, it is difficult to make the 

change to the lecturing style of teaching. Students are not satisfied if they are left to work alone. 

A mismatch in expectations is evident. The students expect more than the lecturers provide. 

They expect everything explained in detail something the lecturers do not do. The lecturers 

expect students to fill in the gaps for themselves but the students believe this the lecturers‟ role. 

This mismatch causes frustration for the students who feel they are being short-changed. If the 

lecturers‟ expectations were made clear at the start of the term, it is possible students would not 

have this added frustration. They would know that the onus is on them to do some work 

themselves. Lecturers expect students to take more responsibility for their own learning i.e. to 

become more self-directed in their approach. 
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Tutorial sheets and homework are given to students on a weekly or fortnightly basis. The 

lecturers expect students to spend one-hour of independent study per one-hour lecture on their 

lecture material and their homework. The students admit that they do not spend this much time 

on their mathematics study. The lecturers expect students to attempt their homework but 

students do not attempt it unless it is part of their final mark. They do, however, attempt the 

work within tutorials under the guidance of their tutor/teaching assistant. Teaching assistants 

decide how they teach the tutorials and should report back to the lecturer if there is a problem. 

Again, there is a mismatch in expectations. Students do not put in the effort lecturers‟ expect so 

this causes some annoyance for all parties. It seems that Irish students have resolved the issues 

in some of the more important debates around service mathematics teaching in favour of „lesser 

mathematics‟ e.g. skills rather than concepts (Bajpai, 1985), and tools rather than understanding.  

 

Students are expected to revise for examinations themselves. It is not the lecturers‟ 

responsibility to revise examination papers in class. The students do expect the lecturers to 

revise past examination papers in class, inform them of the layout of the paper and the order of 

questions on the paper. They also feel that the lecturer should revise material taught months 

beforehand. They have not revised material from the previous term themselves and feel the 

lecturer should help them out more. 

 

Students expect their lecturers to make themselves more available to students and be 

approachable. They should put on extra office hours around examination time for any queries 

they might have regarding their lecture notes or examinations. The lecturers do inform students 

that they already have this opportunity but few students take advantage of the offer. 

 

In summary the principle features of the didactical contract that operates within the Irish service 

mathematics contexts surveyed in this study are: 

 Lecturers expect that students will attend lectures and tutorials; 

 Lecturers do not ask or expect questions in large lectures nor do students expect or ask 

questions in large lectures; 

 Students are expected to come prepared to tutorials and participate fully; 

 Lecturers expect students to prepare for examinations themselves; 

 Students are expected to do independent study including filling gaps in concept 

development, practicing skills and procedures, preparing for tutorials and completing 

assignments; 

 Students expect the lecturers to explain everything in detail in lectures and to provide time, 

opportunities and examples to practice; 

 Students expect lecturers to revise past examination papers in class, discussing the layout of 

the paper and the order of questions; and 

 Students expect their lecturers to be available and approachable to discuss queries regarding 

their lecture notes and examinations. 

 

When a mismatch in expectations occurs, one or all parties are going to feel hard done by and 

frustrated. Motivation levels are likely to drop as a result and negative feelings are likely to 

increase. By the end of the academic year these frustrations may snowball and add 

disappointment, irritation and resentment to an already problematic area. This is particularly 

pertinent for adults trying to learn mathematics. Many have not studied advanced mathematics 

for many years, if ever, and so from the outset have added fears and frustrations that students 

entering directly from second level do not often possess.  
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Preliminary characterisation of service mathematics 

The authors contend that the nature of service mathematics has never been fully defined or truly 

understood by service mathematics practitioners because it is under-theorised. This lack of 

understanding may exacerbate an already difficult situation in a vulnerable arena where student 

mathematical proficiency is not as high as it once was or is not strong as in non-traditional 

groups e.g. adult learners. The following is a characterisation of service mathematics as 

practiced in Irish universities today. This profile emanated from direct observation of classroom 

practice in all seven Irish universities, in addition to analysis of questionnaires, course 

documentation and semi-formal interviews with lecturers and students on service mathematics 

courses.  

 

Service mathematics is distributed across many disciplines and faculties and is identified in 

various ways such as engineering mathematics, mathematics for engineers and scientists, 

mathematics for computing, mathematics for business, technology mathematics. The following 

statements capture the meanings associated with the concept service mathematics in the study: 

 Service mathematics is directed at client groups composed of non-specialist users of 

mathematics; 

 Service mathematics is technique/application based as opposed to theory based; 

 Mathematics content is negotiated between mathematics and client departments with no 

external input from industry or employers; 

 Courses are usually offered in the traditional large lecture/tutorial format; 

 There is a large diversity in mathematical background and attainment of learners; 

 Lecture style is usually “talk and chalk” supported with limited resources e.g. white/ 

blackboard, overhead projector; 

 There is very little interaction or questioning in lectures; 

 The use of real-life mathematical examples is acknowledged as being important but is 

invariably absent; 

 Assessment varies between end-of-term examination and end-of-term examination 

combined with some form of coursework or continuous assessment; 

 Additional learning support may be available and comes in a variety of formats including 

drop-in centres, support tutorials and other learning centre activities; and 

 It is common for class notes to be supplied in book form supported by appropriate textbooks 

for non-specialists. 

 

The authors adapted research tools and frameworks from education to advance our knowledge 

and understanding of service mathematics and the practice of service mathematics in Irish 

universities. These include Brousseau‟s didactical contract (Balachef et al., 1997). While mature 

adult learners were not involved directly in the study, emphasis in this case is the service 

teaching/learning environment as a place where a significant and growing number of adults are 

involved, hence the focus on the didactical contract and a characterisation of the whole 

environment in a different way.  

 

Results of this study uncover a narrow didactical contract from which lecturers and students 

rarely deviate. It is worth noting in this context that the analytical tool used, viz., the didactical 

contract, was developed from studies of school classrooms and that university conditions differ 

significantly in a number of respects that affect the contract. University conditions for service 

mathematics teaching involve very large class sizes and an implicit multi-partite agreement 

distributed over several actors including students, lecturer and tutorial assistant(s). This and 

other aspects of the university learning contract merits further research attention. Class size 
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inhibits teaching styles and, therefore, students‟ mathematical progress. This poses many 

problems for mature students who start university after an absence from study and with lower 

mathematical proficiency and then are faced with less than satisfactory learning environments. 

 

One of the authors, Gill, has taken this analysis forward in her doctoral thesis (Gill, 2006) and 

developed a theoretical model of service mathematics as a pedagogic discourse within the 

discipline of mathematics following Bernstein‟s (1996) work on curriculum. 
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Abstract 

The relationship between quantitative problem solving and commonsense has provided the basis 

for an expanding exploration for Colleran and O‟Donoghue. For example the authors (Colleran 

et al., 2002, 2001) discovered the pivotal role commonsense plays in adult quantitative problem 

solving and suggest commonsense is an important „resource‟ in the adult problem-solving 

context. In more recent papers Adult Problem Solving and Commonsense: (Colleran et al., 

2003a) and Adult Problem Solving and Commonsense: new insights (Colleran et al., 2003b) the 

authors explored the valued position given to „higher order‟ thinking as distinct from the „other‟, 

„lower‟ form of thinking, sometimes described as commonsense thinking. They also looked at 

the manner in which commonsense is created from „natural learning‟ in a range of different 

environments. In Colleran and O‟Donoghue (in press) the authors broadened the investigation to 

include the views of a number of researchers in the field of commonsense who suggest that 

commonsense is a powerful intellectual resource and  provides the bedrock on which 

mathematical understanding is built. The authors have come to the view that the creation and 

use of commonsense require intelligent, creative thinking and this „order‟ of thinking takes 

place naturally in the commonsense environment. Further this intelligent thinking is supported 

by attitudinal as well as structural elements that facilitate the individual to engage new 

commonsense situations so that they become natural learning environments.  

 

Key words: adult, quantitative problem-solving, commonsense, natural learning. 

 

Introduction 

The authors‟ work on adult quantitative problem solving and commonsense has evolved over a 

number of years. For example the authors (Colleran, O‟Donoghue & Murphy, 2001, 2002) have 

argued that commonsense plays a pivotal role in adult quantitative problem solving and 

suggested commonsense is an important „resource‟ in the adult problem-solving context. In a 

more recent paper Adult Problem Solving and Commonsense (Colleran, O‟Donoghue & 

Murphy, 2003a) and in Adult Problem Solving and Commonsense: new insights (Colleran, 

O‟Donoghue & Murphy, 2003b) the authors explored the valued position given to „higher 

order‟ thinking as distinct from the „other‟, „lower‟ form of thinking, sometimes described as 

commonsense thinking. They also looked at the manner in which commonsense is created from 

„natural learning‟ in a range of different environments. They concluded that the creation of the 

commonsense resource requires a broad-based, adaptive use of intelligence and a form of 
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thinking which is intelligent, resourceful and creative. This intelligent thinking takes place 

naturally in the commonsense environment. Furthermore this intelligent thinking is supported 

by attitudinal as well as structural elements that facilitate the individual to engage new 

commonsense situations so that they become natural learning environments. In Colleran and 

O‟Donoghue (in press) the authors broadened the investigation to include the views of a number 

of researchers in the field of commonsense who suggest that commonsense is a powerful 

intellectual resource and  provides the bedrock on which mathematical understanding is built. 

 

In this paper we start by describing the background and the manner in which commonsense 

became an important issue for the authors in the context of adult mathematics education. We 

then provide definitional aspects of commonsense, and follow with a discussion on the creation 

of commonsense in natural learning environments. We then evaluate the resource provided by 

commonsense in practical settings. We conclude by identifying some convergence regarding the 

role commonsense plays in mathematics education and suggest that further exploration is 

validated.  

 

Background  

In Colleran et al. (2001) the authors describe an educational programme for improving adults‟ 

quantitative problem-solving skills. There were three pillars on which this programme was built. 

Firstly, the quantitative problem situations addressed by the learners throughout the programme 

were drawn from appropriate contexts. This helped ensure that the problems were relevant, 

realistic and meaningful for the learners. Secondly, the process of Action Learning provided a 

social learning environment. This environment enabled discussion and dialogue which were 

fundamental to the development of thinking skills. Thirdly, an adaptation of Lonergan‟s (1957) 

philosophy enabled learners to discover the way they think when they are solving problems.  

 

Lonergan‟s philosophy is derived from his 1957 publication entitled, “Insight: A study of human 

understanding‖. He was a Canadian theologian and philosopher who died in 1984. In his book 

he describes how „catching on‟ or „getting the point‟ is a frequent event in the course of our 

daily lives. It would seem absurd to suggest that this act, the act of insight, could provide the 

foundation for a whole new philosophy on human understanding, however Lonergan‟s Insight 

develops this foundational view and also provides a number of cogent reasons why his 

philosophy is suitable in the context of adults solving problems: 

 His problem-solving „programme‟ is adult-orientated, 

 He believed that a good starting point for the development of problem-solving skills is with 

the natural thinking process of the adult, 

 He provides a cognitional structure which identified the thinking processes used by adults 

when they solve problems. 

 

Lonergan‟s cognitional structure is at the heart of an educational programme to improve 

quantitative problem-solving skills among adult basic education learners developed by the 

authors (see Colleran et al., 2001).  

 

Lonergan believed that the process by which adults come to know and decide is the same for all 

normal adults. Not only is the process the same, it is activated and employed without direction 

on the part of the individual. Therefore, the cognitional structure is invariant in that it remains 

the same for each knower and it is naturally innate because it happens without direction or 

effort on the part of the knower.  
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The preliminary stage of Lonergan‟s programme is the uncovering of one‟s cognitional 

structure, i.e. the innate, invariant thinking process. This discovery process, Lonergan 

postulates, will lead to an improvement in problem-solving and decision-making skills of adults. 

 

Lonergan's programme unfolds on three levels of knowing: 

 Commonsense knowing, 

 Scientific knowing, 

 Critical knowing. 

 

Commonsense knowing, because it happens spontaneously in the concrete world, does not 

require the engagement of the problem-solving processes. Scientific knowing is employed when 

an individual engages a novel situation and the mental processes outlined in the cognitional 

structure (Figure 1) move from the concrete to the abstract. 

 

Lonergan suggests that adults become effective problem solvers in two modes - the direct mode 

and the indirect mode. The direct mode of problem-solving requires the individual to 

concentrate on achieving a solution to the problem at hand - problems are solved by engaging 

the mental processes of the cognitional structure. However, the indirect mode requires the 

individual to attend not only to the solution but also to the process - the mental operations 

engaged during the solution episode. Understanding the process by which solutions are found is 

known as critical knowing.  

 

In the context of our educational programme critical knowing enables learners not only to solve 

quantitative problems, it also provides the means by which they can engage with confidence the 

new quantitative situations that present themselves regularly and frequently in the ever-

changing conditions of their daily lives. 

 

Therefore, Lonergan‟s problem-solving and decision-making programme offers more than a 

structure for understanding, knowing and deciding. It offers a developmental process in which 

an adult learner can move from understanding, knowing and deciding at a commonsense level to 

a scientific level and finally at a critical level. It is also a creative process in which the 

individual struggles to spark new insights that may hold the key to a required solution. 

Lonergan‟s problem-solving and decision-making programme can therefore be visualised not as 

a two-dimensional cycle of mental activities but as a three-dimensional helix (Figure 1) which 

dynamically connects concrete understanding at the lower, commonsense level, to a deeper and 

more abstract understanding at the intermediate, scientific level, and finally to an even deeper 

metacognitive understanding at the top of the helix. Knowing at the concrete level provides the 

basis for scientific understanding and both commonsense and scientific understanding provide 

the basis for critical understanding. In this manner the learner builds understanding from 

concrete understanding to abstract understanding to process understanding. The loop structure 

enables the learner to back track if at any stage understanding becomes shaky. The loop also 

points to the relationship and the sequence of development of the three types of knowing. 
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Figure 1. Helix illustrating Lonergan‟s dynamical and developmental process for understanding. 

 

 

Evaluation of our educational programme provided a number of striking insights (see Colleran 

et al., 2001), however the most striking was the important role commonsense played for adults 

as they approached, engaged and resolved quantitative problems. It is therefore important to 

explore commonsense and commonsense environments. 

 

Commonsense and commonsense environments 

Lonergan (1957), who provides the source for much of the authors‟ understanding of 

commonsense, suggests that commonsense is a collection of insights accumulated by a 

community or individuals within that community, in a socio-historic setting. It is bounded by 

the concerns of human living and by workable solutions to daily tasks. Therefore, the 

knowledge that commonsense seeks is not motivated by the pleasure of exercising the mind but 

for the purpose of making and doing. 

 

Coben (2002a) explores the origin of commonsense in Western thought pointing to a clear 

distinction between the British tradition regarding this concept and that of continental Europe. 

The British conception was “one of a practical faculty which the ordinary person exercises in 

his or her everyday life” while Continental European tradition regarded commonsense as that 

―which is expressed in the ideal being of a nation or people‖. She goes on to explore the 

commonsense of Gramsci which she proposes springs from the Continental tradition. It would 

be difficult to situate the commonsense of Lonergan (1957) in either tradition; however it is 

clear that his understanding resonates with elements of both traditions and particularly that of 

Gramsci. 
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In his recent paper Making Sense of Common Sense Knowledge, Kuipers (2004) suggests that 

commonsense is used without concentrated effort to meet the everyday demands of the physical, 

spatial, temporal and social world. He continues that commonsense knowledge consists of 

Foundational Domains of understanding that are learned at a young age. These domains, such 

as space, time, properties of materials and certain aspects of the social and physical world, are 

used to reason with commonsense issues.  

 

Howson (1998, p. 258) defines commonsense as a vague, culturally dependent concept. It is 

based on local knowledge, past experiences and simple reasoning. ―Common sense is 

distinguished by the way in which it depends upon evidence, accepted truths and conventions, 

and upon „innate‟ operating systems of perception, meaning and understanding”. 

 

While there is no doubt that commonsense has been used by many people to mean different 

things there is general agreement that it operates spontaneously in the concrete, social world. 

The environment within which it operates is quite specific. It is specialised in the concrete 

objects of everyday living in terms of their relationship, not to one another, but to the individual. 

It is bounded by the concerns of human living and by workable solutions to daily tasks. 

“[Commonsense] ... clings to the immediate and the practical, the concrete and the particular. ... 

Rockets and space platforms are superfluous, if you intend to remain on this earth” (Lonergan 

1957, p. 179). Common sense is pragmatic because it deals with practical problem-solving 

situations that present themselves in the course of everyday living. 

 

However the content of commonsense understanding does not reside wholly in the mind of any 

single individual. It is divided out among the different individuals operating in different roles 

throughout the community. The result is a collection of specific totalities with their individual 

socio-cultural, and historical common sense. So to capture an understanding of a particular 

community one must inquire into the commonsense of many fields to discover the particular 

unity of commonsense understanding which “organically binds together the endlessly varied 

pieces of an enormous jig-saw puzzle” (Lonergan, 1957, p. 211). 

 

Having established our understanding of what commonsense is it is now time to explore 

commonsense thinking and how commonsense is created. 

 

Commonsense thinking  

In Colleran et al. (2003a) we discussed the invisible nature of commonsense in action. 

Commonsense is used without thinking and therefore is not deliberately adverted to. It is 

employed in social environments that are routine and familiar. It is a dynamic intellectual 

process that moves from Experience of Familiar Situations to Commonsense Understanding and 

spontaneously to a Decision. 

 

However, even though the term is called commonsense, it is not common to all people. The 

intelligent person of commonsense demonstrates a greater readiness “in catching on, in getting 

the point ... in grasping implications, in acquiring know-how” (Lonergan, 1957, p. 173). And 

while commonsense is not a natural endowment of all normal adults the capacity to create this 

resource is. This capacity is explained by Lonergan through a naturally available, innate and 

invariant cognitional structure by which all normal adults come to understand and learn 

(Colleran et al., 2001). However, there is a suggestion made throughout Insight (Lonergan, 

1957) that the rigour of scientific thinking is not required to create new commonsense 

understandings - that new practical, concrete, commonsense understandings do not require a 
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similar form of sustained concentration as do new conceptual, theoretical and scientific 

understandings. However, Brio (1988) has the following observation regarding the creation of 

commonsense:  

 

The common sense „circuit‟ of learning generates a noetic
1
 „nucleus‟, a habitual „core‟ of 

understanding. This core emerges and develops in response to his multiple and advancing 

engagements with his situation. It expresses itself in the repertoire of gestures, concepts, linguistic 

capacities, skills, etc., which fit him for judging and dealing with it (pp. 48-49). 

 

Whether practical or theoretical, concrete or conceptual, the creation of new insights requires 

individuals to think and use their cognitional capacities. In the context of commonsense activity, 

thinking takes the form of analysis and synthesis of available and accessible understandings. 

However, if available and accessible commonsense cannot provide for the situation at hand, the 

intellectual, creative processes must be engaged so that new commonsense insights and 

understandings can be created. This creative process is equivalent if not similar to the scientific 

knowing process delineated by Lonergan (1957, p. 285). 

 

While the same explicit, elaborate procedure of the scientific researcher is not required for 

commonsense, something equivalent is to be sought by intellectual alertness, by taking one‟s 

time, by talking things over, by putting viewpoints to the test of action.  

 

Commonsense thinking is not in search of the „virtually unconditioned‟ (Lonergan, 1957) truth 

of the scientific inquirer, however it does require a truth which is conditioned by the sensible, 

meaningful and practical circumstances in which it finds itself. And because commonsense 

situations are dynamic the commonsense thinker must be creative and adaptive to these ever-

changing contexts. In the next section we explore the manner in which commonsense is created 

and its adaptive nature.  

 

Creating and „adapting‟ commonsense understanding 

In Colleran et al. (2003b) the authors proposed that the creation of commonsense understanding 

occurs naturally by employing a number of communicative methods as well as a particular 

predisposition. They suggested that talking as well as the use of gestures provide the means for 

communicating and creating commonsense. The use of these communicative methods is 

motivated and supported by an intrinsic and natural predisposition and an inbuilt desire to be 

intellectually creative and to behave intelligently among other people. The individual has no 

choice about behaving intelligently; the drive to understand is in-built (Lonergan, 1957). The 

result is that commonsense learning takes place naturally in commonsense environments. 

 

The authors propose that there are a number of natural elements associated with commonsense 

learning that enable individuals to become commonsense capable as they engage a variety of 

real-life contexts. In Colleran et al. (2003b) they suggested that these elements include:  

 An inbuilt desire behave intelligently; 

 Utilisation of social commonsense; and 

 Utilisation of relevant technical commonsense. 

 

                                                 
1
 The word noetic comes from the ancient Greek nous, for which there is no exact equivalent in 

English. It refers to inner knowing, a kind of intuitive consciousness - direct and immediate 
access to knowledge beyond what is available to our normal senses and the power of reason.  
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“An inbuilt desire to behave intelligently” is the natural endowment of all normal adults 

(Lonergan, 1957). This element remains constant in all natural learning environments when the 

individual is motivated to engage and participate. The experience of being „in the dark‟ about 

things that matter to an individual is one that all normal adults wish to avoid. 

 

Social commonsense is generated and utilised in an inter-subjective environment where speech 

and gestures are the mode of communication and where values, individual characteristics and 

personality are displayed in an effort to generate admiration and a good social relationship. This 

element of commonsense enables the individual to adapt to the social setting by employing the 

social commonsense already available and by building on this resource. Technical 

commonsense on the other hand is related to the specific skill domains, for example, carpentry, 

cooking, teaching, researching. This element of commonsense may also require adaptation in 

the new context and is developed quite naturally by building on the skills already acquired. 

 

The authors contend that because of a number of attitudinal and structural elements such as 

those mentioned above the issue of „transfer‟ takes on another dimension - one that challenges 

the impenetrable barriers constructed between contexts by those who view transfer of learning 

as problematic. These elements enable individuals to engage non-routine situations so that they 

become natural learning environments. This „adaptive‟ characteristic associated with 

commonsense may open another perspective on the „transfer of learning‟ problem and provide a 

framework for exploiting this resource in the formal learning context. 

 

There are a number of elements associated with the creation of commonsense understanding; an 

inbuilt desire to behave intelligently, communicating through speaking and gestures, and the use 

of social and technical commonsense. These elements facilitate the creation of a „natural 

learning environment‟ in which individuals can adapt commonsense understandings to each new 

commonsense situation.  

 

Having developed an understanding of commonsense, commonsense thinking and how 

commonsense is created we now turn to the „resource‟ commonsense provides particularly in 

the problem-solving context. 

 

Commonsense as a resource 

In Colleran et al. (2003a) we discussed the resource commonsense provides in the problem-

solving context, i.e. it provides a resource with three distinct elements: 

 An accumulation of practical understandings, 

 A form of knowing, 

 A basis for scientific understanding. 

 

An accumulation of practical understandings 

Commonsense is a collection of insights accumulated by a community, or individuals within 

that community, in a socio-historic setting. The context within which it operates is quite 

specific. It is specialised in the concrete objects of everyday living in terms of their relationship, 

not to one another, but to the individual. It is bounded by the concerns of human living and by 

workable solutions to daily tasks. “[Common sense] ... clings to the immediate and the practical, 

the concrete and the particular. ... Rockets and space platforms are superfluous, if you intend to 

remain on this earth” (Lonergan, 1957, p. 179).  
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A form of knowing 

Intelligence is met in every walk of life. It is this everyday, practical, concrete, intelligence that 

Lonergan (1957) calls commonsense. However, even though it is called commonsense, it is not 

common to all people. And while it may be accessible to all normal individuals there are no 

acknowledged specialists or experts (Coben, 1997). The intelligent person of commonsense 

demonstrates a greater readiness “in catching on, in getting the point, ... in grasping 

implications, in acquiring know-how” (Lonergan, 1957, p. 173).  

Commonsense knowing can be identified by the following: 

 Pragmatism, 

 Spontaneity, 

 Socially generated, 

 Temperamentality, 

 Taking things for granted, 

 No theoretical inclination. 

 

Commonsense activity is not characterised by periods of sustained thinking and reflection - new 

understandings are required but they are already in the mind‟s inventory and are accessible. 

Intelligence activates a „micro‟, instantaneous cycle of the cognitional structure with the 

purpose of establishing the familiarity of the situation and a satisfaction that no new insights are 

required to deal with the situation encountered. However, when the commonsense inventory 

comes up short and new insights are required to deal with a novel situation, the creative, 

intellectual processes must be activated.  

 

One must also consider the difference between spontaneous commonsense decisions and actions 

and impulsive responses with resultant rash decisions. We do not want to confuse impulsive, 

rash decisions and actions with spontaneous commonsense actions. Dewey (1938) pointed out 

that education is about self discipline, and thinking creates the breathing space that transforms 

impulsive, ill disciplined, rash decisions and actions to reflective and disciplined decisions and 

actions. He suggested that education and learning are the agents that enable an individual to 

control these desires and impulses. While Dewey was not referring to commonsense his 

observations have been helpful in differentiating between sound commonsense decisions and 

impulsive, rash decisions.   

 

In summary, common sense is confined to the particular, the experiential, and the concrete, 

where only non-technical, descriptive terms are used. It is the field of human interaction, where 

people operate during their everyday living. Commonsense is not impulsive and rash, however 

it operates within a cultural context where it settles for a mode and measure of understanding 

that enable human activity and human interaction to operate intelligently.  

 

Commonsense as a basis for scientific understanding 

However despite its limitations where would we be without commonsense? There would be no 

place for human temperament, spontaneity, practicality, intuition, aesthetic appreciation, love, 

hate and so on. In other words there would be no room for what makes us human, imperfect 

though that may be. However there is another type of understanding which tries to reduce the 

subjective „drawbacks‟ to produce a more objective understanding, for example, scientific 

understanding. Lonergan tells us that the scientist is not the whole man or woman functioning 

“but the rest of the man subordinated to his intelligence. Like Thales so intent upon the stars 

that he tumbled into the well” (Lonergan Research Institute, 1996, p. 113). While an individual 
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requires commonsense understanding to survive effectively in this world, occasions may arise 

when scientific understanding is required. This is not to say that the subject is not intellectually 

engaged in the field of common sense. Commonsense requires an equally intelligent subject; it 

is the context that determines the function to which the intelligence is directed. Therefore 

commonsense can be regarded as a sea within which arises here and there islands of conceptual, 

scientific understanding and knowledge (Tekippe, 1996). Without this sea or concrete world of 

commonsense understanding, science has no starting point. It is into this particular, concrete 

world that science attempts to introduce universal, theoretical understanding.  

 

Kuipers (2004) suggests that commonsense is a „qualitative‟ rather than „quantitative‟ resource. 

This qualitative knowledge is relatively easy to learn and enables individuals to solve a 

surprising number of problems. The interesting thing about qualitative solutions is that there are 

usually a number of possible courses of action unlike the single quantitative solution. He 

continues that part of the power of commonsense knowledge comes “from the ability to 

represent and use knowledge even when it is incomplete”. However Kuipers suggests that 

qualitative solutions can be strengthened with quantitative information.   

 

According to Howson (1998) commonsense acts as a resource: 

 That provides a means to talk about mathematics, 

 That educators must try to develop in students, 

 Which we must draw on in our teaching, 

 That provides a foundation for mathematical development, 

 That provides and external motivation for learning mathematics. 

 

Howson cautions, however, that there are limitations associated with commonsense because 

although mathematics is built on commonsense it can provide a constraining force on the 

development of mathematics because commonsense and the mathematical worldview are often 

apparently contradictory. We are reminded that mathematics too has its own commonsense so, 

as educators, we must attend to everyday commonsense as well as the commonsense of 

mathematics.  

 

Therefore, in the context of solving quantitative problems, commonsense provides a wealth of 

practical experience, a spontaneous yet not impulsive feel for the solution to the problem 

through the commonsense knowing structure, a confident basis on which to build a scientific 

solution and an external motivation for learning mathematics.  

 

Employing commonsense as a resource in the resolution of quantitative problems 

(Practical examples)  

In the evaluation phase of our educational programme (Colleran et al., 2001) a number of 

instances provided clear evidence of situations where learners mobilised their commonsense as 

the starting point for the solution to „real-life‟ quantitative problems. This was particularly 

apparent in the „Stocks and Shares‟ and „Designing a Car Park‟ problems. Learners began to 

feel confident enough to contribute what they thought was relevant in a particular discussion 

and were willing to take help from other learners or from the tutor if other learners could not 

help. 

 

The „realistic‟ context created in the „Stocks and Shares‟ problem provided an opportunity for 

discussing reasons for strong and weak share prices. Learners talked about the relevance of bad 

press and how this could affect share prices. In the „Designing a Car Park‟ problem learners 
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discussed issues such as the average size of a family car, the size of a minibus, how much room 

is needed to open the door of a car and how to represent the size of the car park site on a sheet 

of paper using an appropriate scale. 

 

These quantitative problems provided fertile ground for the use of learners‟ commonsense 

including sense-making, judging, reasonableness and mature decision-making. Building on 

these „commonsense‟ discussions learners began to discover and employ the following 

mathematical skills on a daily basis: 

 

 Adding, subtracting, dividing and multiplying of whole numbers and decimals, 

 Calculator work, 

 Data tables, 

 Percentages, 

 Time, 

 Estimation, 

 Predictions, 

 Linear measurements, 

 Areas, 

 Averages, 

 Scales. 

 

In an effort to clarify the qualitative difference between commonsense and scientific 

understanding the tutor used the image of a circle (see Figure 2). Firstly the tutor displayed the 

shape for a few moments and asked learners what did they see?  

 

 

 

 

 

 

 

 

 

 

Figure 2. “What do you see?” 

 

Immediately learners began to suggest „a round shape‟, „a red ring‟, „a wheel‟, „the Sun‟, „a 

shape with no beginning or end‟, „a universal symbol‟, „it can be any size‟, and so on. The tutor 

then uncovered the image so that learners had time to concentrate. He then asked if this shape 

was displayed in a mathematics class what would it mean? There was immediate reaction from 

some learners with words such as „circumference‟, „degrees‟, „area of circle‟, „sphere‟ and 

„perimeter‟. The tutor continued with more probing questions such as why is it a circle? and 

what is the meaning of the word „circle‟? In struggling to come to an understanding learners 

suggested „other shapes have corners‟, „you can bisect this shape continuously‟. Then one 

learner suggested that „the midpoint to the edge will always be the same‟. Again the tutor 

probed with a question, „is a football a circle? „All learners agreed that the circle must be flat. 

Finally learners agreed that a circle is a line on a flat surface that is equally distant from a point 

inside the circle. The tutor then confirmed the qualitative difference between the first, 

 

 

 

 

 

 

 

 

Look at this and say what you see. 
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commonsense, spontaneous description of the round shape and the scientific, thought-out 

„definition‟ of the circle.  

 

This was an excellent and enjoyable exploration for many learners for many learners who 

participated in the field trials of our educational programme. In his post-class interview Learner 

8 was astounded and satisfied with this session: 

 

I thought it was interesting because at the start of it was just, oh, a circle right. But we kinda 

started talking about it and got more into it and we managed to get half an hour of talk out of it … 

from a circle? which I thought was amazing… I thought well, how am I here thinking and talking 

about a circle for so long. I found it very interesting. [L8:LI:Dec 14
th

 2000] 

 

Learner 1, in his journal reflects the affective aspect to the class when he suggests feeling good 

about and liking thoughtful classes: 

 

A feel-good class with interaction and thinking… I like provoking, thoughtful classes. Today‟s 

„circle‟ example was a good example of that. [L1:LJ: Dec. 7
th

 2000] 

 

This was an important session for many learners because they were enabled, through the gentle 

probing of the tutor, to uncover what they knew about the circle and develop understanding. 

They also discovered that new understanding is achieved by taking time to think. There was a 

sense of achievement at having come to a „definition‟ of a circle.  

 

These examples provide evidence that commonsense provides not only a confident starting 

point but also the invaluable resource. It brings some clarity to the qualitative difference 

between commonsense and scientific understanding. And even though there are two intellectual 

fields of operation it does not imply that different people exclusively inhabit each field. A single 

human mind can and does operate effectively within both fields. When the individual is engaged 

with practical issues he or she is concerned with the development and growth of common sense 

of the particular place and time in which he or she operates. However, that same individual may 

need to develop scientific understanding in relation to their job or profession. This shift from 

commonsense to scientific understanding is similar to the developmental process described in 

Argyris and Schon, (1996). They describe a process that moves from routinised, tacit, 

commonsense understanding, which leads to no significant change of action, to a far deeper, 

scientific understanding, which brings about a change in the way the individual acts. The former 

is described as „single-loop‟ learning while the latter is described as „double-loop‟ learning. 

Until one attends to experiences in this reflective manner things will continue in the routine, 

however, with reflection the situation will become transformed from commonsense, single-loop 

learning to scientific thinking and double-loop learning. Again, the basis for scientific 

understanding is the routine world and it is reflection and scientific thinking that leads to new 

understanding and knowledge. 

 

Lonergan (1957) assures us that science does not have a monopoly when it comes to intellectual 

demands and ability. Common sense and science are equally intelligent and they have a 

functional synthesis. Without commonsense there is no starting point for scientific 

understanding. Both science and commonsense operate as partners in the development of human 

understanding. However, there is concern that scientific knowledge has become a “fetish used to 

alienate students (and teachers) from their own native ability to know the world” (di Norcia, 

1975, p. 27). Making sense of the experiential world is intellectually demanding and 

fundamental to everyday living and may provide an invaluable resource, particularly for adult 

learners when they are engaged in formal education. 
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Convergences and speculations 

The authors have begun to recognize the convergence of a number of different strands in our 

work and the work of others e.g. Howson (1998); Coben (2002a, 2002b); Kuipers (2004). 

Kuipers (2004) in his definition of commonsense identifies foundational elements of 

commonsense including number and geometrical awareness, thus clearly identifying 

mathematics as part of the structure of commonsense. This may explain why adults describe the 

mathematics that they master as commonsense, i.e. this may go some of the way towards 

explaining the phenomenon of „invisible‟ mathematics as reported by Coben (1997). Kuipers 

(2004) classification of commonsense is supported in part by recent findings of the cognitive 

scientists who have discovered that number concepts are „hard-wired‟ into humans when they 

are born as discussed in Devlin‟s (2000) book The mathematics gene. 

 

There is clear agreement that commonsense provides not only the bedrock on which 

mathematical understanding is built but also a resource that scaffolds mathematical 

development. Radical constructivism (von Glasersfeld, 1990) focuses on leaning as serving an 

adaptive purpose i.e. learning is a survival mechanism. Therefore we should learn to exploit 

natural learning in different environments, e.g. everyday life and workplaces. These ideas are 

implicated in commonsense knowing and therefore the challenge for us is to exploit 

commonsense in the service of adults mathematics education. 

 

Conclusion 

The perceived divide between commonsense and mathematical understanding provides both the 

insight and the challenge. The insight, which is similar to that of Tekippe (1996) when 

illustrating the relationship between primordial knowing and conceptual knowing, is that 

commonsense can be regarded as a sea within which arises here and there islands of 

mathematical understanding and knowledge. Without this sea or commonsense world, 

mathematics has no starting point. The challenge for educators is to cultivate learning 

environments which will enable learners to draw from their commonsense resource to 

strengthen and build mathematical commonsense (Kuipers, 2004; Howson, 1998). The authors 

suggest a convergence of a number of strands in adult‟s mathematical education research and 

seem to provide a basis for future research.  
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Abstract 

The success of policies to attract adults back to the learning of mathematics, at various levels, is 

often linked to questions of motivation. However, motivations depend on relevant beliefs, 

attitudes and emotions about mathematics - which themselves reflect, together with experiences 

with maths in school and in the home, wider cultural discourses on mathematics. The work 

presented here is part of a larger study examining the complex relations between popular 

cultural products such as advertisements and films, the way that knowledge is portrayed by 

them, and possible consequences for people‟s affective responses. The initial phase of the 

project (Evans, 2003, 2004) analysed small „opportunistic‟ samples of advertisements and films. 

The advertisements portrayed mathematics as generally negative, whereas the films were more 

ambivalent. In the next phase, we produced larger samples of both advertisements and films. In 

this paper, we report on our search through a systematic sample of issues of UK daily 

newspapers for „mathematical‟ advertisements. A notable finding was the very small number of 

advertisements containing images of mathematics. Those few advertisements we found were 

most frequently for cars, or for services to businesses. Using a discourse theoretical perspective 

and a hybrid methodology, we categorise advertisements according to features such as their 

„appeal‟ to potential consumers - and we also produce semiotic readings of a sub-sample of 

advertisements, as to their „message‟, in particular their images of mathematics, and of people 

doing, using, or teaching mathematics. Here we find these images to be much more varied and 

subtle than in the initial phase. We end by discussing some of the consequences of our analysis 

for perceptions, teaching and use of mathematics in today‟s market economy societies. 

 

Keywords: images of mathematics; popular culture; advertisements; discourse analysis; 

emotion; motivation. 
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Introduction 

Despite long-term neglect of emotional issues in education, they are today firmly on the 

educational policy agenda. This is evident from the way that resources are drawn from diverse 

cultural fields to please and to educate learners in formal educational settings. The “emotional 

turn” (Hartley, 2004) has shifted the emphasis in the polarity rational vs. emotional, within the 

educational discourse. But terms such as emotional intelligence and emotional literacy theorise 

emotions as something to be taught, learned and evaluated. They function to regulate and to 

manage learners - especially adults, a newly significant target group, since, for instance, the 

inception of the UK government‟s Skills for Life strategy, launched in 2001. 

 

The emotional and attitudinal issues are especially important in mathematics education, since 

mathematics functions as a gatekeeper, both as a qualification for further study and desirable 

jobs, and as a prerequisite for certain types of cultural participation. Thus, recent policies on 

lifelong learning, in the United Kingdom (UK), in the European Union (EU), and around the 

world, argue for a substantial return to learning by adults, notably in mathematics and 

numeracy, to help eliminate inequalities (e.g. Parsons & Bynner, 2002; Hughes, Blaxter, Brine, 

& Jackson, 2006) Yet there is concern over the persistence of low levels of motivation and high 

levels of avoidance of mathematics and resistance towards it (e.g. Wedege & Evans, 2006), both 

among schoolchildren and adults. These „negative‟ attitudes have been linked in the research 

literature to emotions experienced during school activity, in “numerate everyday contexts” 

(Evans, 2000) - and as a result of exposure to various kinds of media representations.  

 

As Paul Ernest (1995) notes 

 
A widespread public image of mathematics is that it is difficult, cold, abstract, theoretical, ultra-

rational, but important and largely masculine. It also has the image of being remote and 

inaccessible to all but a few super-intelligent beings with „mathematical minds‟.  

(Ernest, 1995, p. 1)  

 
He argues that negative attitudes to mathematics are likely to be associated with the traditional 

absolutist image of mathematics (as described in the quotation), rather than a more humanised 

image of the subject.  

 

Gail FitzSimons (2002) sees the public images of mathematics as “created and reflected both in 

the cognitive and affective domain and concern[ing], inter alia, knowledge, values, beliefs, 

attitudes, and emotions”. She argues that 

 

a very strong influence on the public image of mathematics comes from the experience of formal 

mathematics education … [and] other influences such as stereotypes reinforced by popular media, 

or personal expectations conveyed explicitly and implicitly by significant others such as peers and 

close relatives. (2002, pp. 43-45) 
 

For these reasons, the public images of mathematics and the images of mathematics education 

are exceedingly difficult to disentangle. 

 

The work-in-progress presented in this paper explores representations of mathematics as 

articulated in a variety of ways - and not only as „stereotypes‟ - through powerful media forms. 

From the beginning of this project, we have decided to focus on advertisements (largely in the 

press) and films as our two media forms. This is because of our belief that these are two from 

among the most socially potent media in present times, and because the relevant research 
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materials are relatively convenient to manage. Further, presentations and discussions based on 

them tend to be accessible to a wide range of audiences (including international ones): many 

films (at least mainstream ones) tend to be well known globally, and advertisements can be 

portrayed on one side of paper (or on one projector slide). 

 

The initial phase of the project analysed small and „opportunistic‟ samples of each (amassed 

with help from friends, and colleagues, and mostly from before 2001). Our initial thinking and 

analysis of these advertisements and films focussed on issues such as: 

 the extent to which dominant discourse(s) on mathematics could be identified in such 

samples of materials;  

 the extent to which there appeared to be systematic differences in the representation of 

mathematic(ian)s between films and advertisements (especially the most recent ones); and 

 the extent to which there appeared to have been changes in these discourses over time. 

 

In connection with the latter issue, we asked whether we might find a more „positive‟ tone (in 

terms of the image of mathematics and mathematicians) in advertisements and films after 1995
1
, 

than before. 

 

Our initial results were as follows. The advertisements we found generally portrayed 

mathematics as something to be disliked, feared and mistrusted. On the other hand, the films 

(e.g. Good Will Hunting (Bender & Van Sant, 1997), A Beautiful Mind (Grazer & Howard, 

2001), Enigma (Michaels, Jagger & Apted, 2001)) produced ambivalent messages. Mathematics 

was there portrayed as perhaps the most powerful form of thought - and as therefore supporting 

a quest for truth and beauty. But too much mathematics can be dangerous: it can be an 

expression of - or perhaps a trigger for - „madness‟ (see also Evans, 2003, 2004). 

 

In the second phase of the project, we aimed to produce larger samples of both advertisements 

and films. A larger number of films were thus identified as relevant, and systematic sampling of 

UK national daily newspapers from 1994-2003, supplemented by our earlier „opportunistic‟ 

sample, resulted in a small corpus of print advertisements to analyse. 

 

In this paper, we focus on our sample of print advertisements. Drawing on several conceptual 

approaches, we first discuss our discourse theoretical perspective, followed by an outline of our 

methodology. We then present an analysis of our sample of advertisements, as well illustrating 

our semiotic readings of several of them. We conclude by pointing to some of the implications 

of our analysis for images, teaching and use of mathematics in the current conjuncture. 

 

Theoretical Considerations 

Our starting point is that films, advertisements and other such cultural productions are 

representations which both reflect, and contribute to the construction and maintenance of, 

dominant social discourses. Such discourses, formed partly by appropriations of popular cultural 

ideas or images, might be reappropriated by official educational discourses and reinterpreted by 

individual agents, be they policy makers, teachers, pupils, or adult learners. This means that we 

are interested in cultural productions because they play a significant role in constructing and 

                                                 
1
 We chose this point in time partly in response to features of the early data, and partly on the basis of the 

initially positive reporting around that time of Andrew Wiles‟s efforts at proving Fermat‟s Last Theorem. 

As will become evident, we no longer propose such a simple factor for such a substantial ideological 

change, nor are we sure that such a change has occurred! And, even if it has occurred, there may have 

been a time-lag (see also Conclusions). 
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reproducing dominant and dominated positions of power affecting individuals in many contexts 

of social and educational activity. 

 

Our theoretical approach uses discursive perspectives (see Evans, Morgan & Tsatsaroni, 2006; 

Evans, 2006), based on Critical Discourse Analysis (Fairclough, 2003) in socio-linguistics, 

work on pedagogic discourse in the sociology of education (Bernstein, 2000), and post-

structuralist analyses, drawing on psychoanalytic concepts (e.g. Walkerdine, 1988, 1997; Evans 

2000; Mendick, 2006). 

Discursive perspectives focus on specific societal/institutional practices as recurrent forms of 

behaviour/action. A discourse here is seen as a system of ideas/signs organising and regulating 

the related practices, crucially, with respect to social relations of power. Discourse has several 

functions: 

 defining “how certain things are represented, thought about, practised and studied”;  

 providing resources for constructing meanings, and accounting for actions; and 

 “construct(ing) identities and subjectivities”, which include affective characteristics and 

processes (Hall, 1997, p. 6). 

 
Power is exerted in micro social interactions, in „meso‟ institutional contexts, and in the wider 

culture, including by policy-makers and by the media within popular culture (Appelbaum, 

1995). 

 

A key concept is that of positioning, a process whereby an individual subject takes up and/or is 

put into one of the positions which are made available by the discourse(s) at play in the setting. 

In this approach, a person‟s identity, which includes more durable aspects of affect such as 

attitudes and beliefs, comes from repetitions of positionings, and the related emotional 

experiences, in a context of a personal history of positionings in practices. 

 

Bernstein‟s sociological theory is also a main theoretical source (Bernstein, 1990, 2000). First, 

his concept of recontextualisation is a key concept in understanding the construction of 

discourse. This was developed by Bernstein to describe (initially) how pedagogic discourse is 

created through social processes which involve selection, simplification, repositioning and 

refocusing of elements drawn from knowledge producing discourses (Bernstein, 1990). These 

processes entail transformations of these elements and changes in social relations. Therefore, 

like official pedagogic discourses, media discourses are regulatory, having consequences for the 

construction and reconstruction of identities and subjectivities. 

 

Of particular relevance for developing our problematic are two key assumptions forming the 

basis of Bernstein‟s theory. The first is that education today, more than ever before, serves 

symbolic control functions rather than functions related to material production (i.e. transmitting 

knowledge and skills). The second assumption is that education, while belonging as an 

institution to the general cultural field, is nonetheless distinguished from it - since historically it 

has become the state‟s official site for social and cultural reproduction. This means that in the 

context of Bernstein‟s theory the pedagogic discourse assumes priority over and against other 

(„unofficial‟ or non-state, e.g., media) institutions and their discourses in the cultural field. 

However, a post-structuralist reflection on Bernstein‟s notion of discourse (Tyler, 2004; Lemert, 

2006) would recommend greater consideration of the interconnections between the wider field 

of symbolic control and the field of education; or, more precisely, of the perpetual constitution 

and reconstitution of their respective boundaries and relations through the influence of internal 

(to each), as well as external, political, social and cultural forces. 
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Nevertheless, Bernstein‟s later emphasis on media discourses (2000, Ch. 11) provides important 

theoretical insights into our research object. The first insight comes from his view that cultural 

productions, whether oral communications in the classroom, textbooks, syllabuses, 

advertisements or films, are the means by which power relations translate into discourse and 

discourse into power (Bernstein, 1990). Of importance here is to describe what Bernstein calls 

the code modality regulating communication processes; his concepts of classification and 

framing are indispensable in such activity. Classification helps to conceptualise power relations 

between different categories of agents (e.g., transmitter and acquirer), discourses (scientific and 

everyday), forms of knowledge (mathematics and history). Framing helps to ask questions 

regarding who has control over what in the process of communication/interaction. Furthermore, 

both concepts utilise the idea of boundary pointing to the importance of describing changes in 

its strength in the processes of recontextualisation through which (pedagogic) discourse is 

constructed, taught and learned. 

 

The second theoretical insight stems from his view that contrary to pedagogic discourses that 

form more durable pedagogical relations and communications, media representations contain a 

range of discourses that are segmentally organised. These segments may have a variety of 

discursive realisations, and may result in different motivations - aiming as they do to maintain, 

develop or change an audience niche (Bernstein, 2000, Ch. 11). We can assume therefore that 

due to their segmental organisation, media discourses are multi-layered, creating a variety of 

modes of communication, and are therefore complex as to their reception. That is, we cannot 

expect a strong, or even indirect, control over the context, social relations and motivations of the 

receivers/consumers. On the contrary, what is acquired, at what level and for what purpose is 

open to investigation and debate. Nevertheless, Bernstein calls this form of media discourse a 

quasi-pedagogic discourse, thus indicating that media discourses entail some form of pedagogic 

(i.e. social) regulation, irrespective of the ways in which messages are acquired. 

 

This basic analysis of media discourses as quasi-pedagogical justifies at this theoretical level of 

discussion the focus of our current study of mathematics representations in the media. In 

particular, it allows us to argue that the modalities of communication created by the organisation 

of media discourses attempt to distribute forms of consciousness, identity and desire
2
. At the 

same time, these theoretical insights point to the difficulties of such a project; especially with 

regard to the implications, for individual receivers of messages, of any analysis of the modes of 

communication embedded in a given discourse. 

 

Thus far we have argued for the importance of approaching our topic with the view that the 

production of cultural objects simultaneously inscribes ways of producing identities and 

subjectivities. Our second key starting point is the idea that central to the constitution of 

subjectivity in sites of cultural production are the links forged between the cognitive and the 

affective, here understood as the question of the place of emotion in cognitive-affective chains 

of signification. By this, we mean chains of developing meanings produced by chains of 

signifiers in the relevant text. 

 

On emotion, the following points are important for us. First, just like thinking, learning, or 

working with mathematics, emotional expression and experience are embedded in social 

contexts, and thus can be seen as socially organised (see Evans, Morgan & Tsatsaroni, 2006). 

 

                                                 
2
 Leiss, Kline & Jhally (1990) point to the possibility of a given culture of „consumers‟ of advertising 

being „educated‟ over time through changing forms and strategies of advertising. 
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Second, we see emotion as related to desire, which is considered to permeate the workings of 

language. Thus emotion can be visualised as a charge attached to ideas and the terms in which 

they are expressed. This charge has a physiological, behavioural (including verbal) expression, 

and a subjective „feeling‟ aspect. This allows emotion to be seen as „attached‟ to ideas 

(cognition), but in ways that are fluid, not fixed. Some of this fluidity can be seen as related to 

psychic processes of displacement, where meanings and feelings flow along a chain of ideas (or 

signifiers) and condensation, where meanings and feelings „pile up‟ on a single signifier (Evans, 

2000). This is how the psychic/„individual‟ and the linguistic/social interconnections could be 

conceptualised. 

 

Third, emotions may be unconscious in the psychoanalytic sense of being pushed into the 

unconscious, via the operation of repression, one of the defence mechanisms. In psychoanalytic 

approaches, ideas which have strong emotional charges, such as anxiety, or which mobilise 

intrapsychic conflict, have a tendency to meet defences, and thus to be repressed. Therefore, 

much thought and activity takes place outside of conscious awareness: everyday life is mediated 

by unconscious images, thoughts and fantasies (Hunt, 1989). This unconscious material is 

linked to complex webs of meaning (Evans, 2000, Chs.7-10).  

 

Thus, emotions must be understood in connection with desires and fantasies. Many desires are 

unconscious, since they may be felt to be „unacceptable‟ or in conflict with the person‟s desired 

social image; fantasies are specifically „unrealistic‟ or „irrational‟ images and narratives that 

express the desire for some object on the part of the person entertaining them. Both have 

„social‟ aspects, in that desires are connected with social imagery, as is the case with advertising 

and films, and fantasies can manifestly be shared at the group, professional, or national cultural 

level (Walkerdine, 1988, Chs. 9 & 10). 

 

An excerpt from Enigma (Michaels, Jagger & Apted., 2001), a film which portrays 

mathematicians at work and at play, allows us to illustrate the role of fantasy in the effectivity 

of films and their articulation of powerful elements of social imagery. In this excerpt, the 

themes of desire and fantasy are illustrated in a story of the code-breaking headquarters at 

Bletchley Park in Britain in World War 2. In this scene, the hero, a mathematician, goes to the 

home of a woman with whom he had earlier fallen in love. He does not find her there, but he 

cannot resist entering her room; there, he recollects her image, as he smells her perfumes, and, 

in particular, one earlier meeting with her: 

 

Theme song in the background, they are sitting on a sofa. 

She: Why are you a mathematician? Do you like sums? 

He, holding a rose: Because I like numbers - because, with numbers, truth and beauty are the same 

thing … you know you‟re getting somewhere, when the equations start looking … beautiful. (He 

looks at her slightly appraisingly/appreciatively.) 

Then you know the numbers are taking you closer to the secret of how things are. A rose is just 

plain text… 

He hands her the rose; she takes it, but, as he passes it over, a thorn pierces his thumb and makes it 

bleed. She kisses his thumb; they embrace. 

Illustration from Enigma (Michaels, Jagger & Apted., 2001) 

 

In this scene, the beauty of mathematics is intertwined with that of the rose and that of the 

classically attractive woman. He exhibits his desire for these beautiful „objects‟, and further, in 

aligning beauty with truth in mathematics, he suggests a „higher‟ form of beauty. His desire to 

follow “the numbers […] closer to the secret of how things are” suggests a heroic goal shared 

by many mathematicians, and also perhaps attractive to some young mathematics students at 
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school or university. Others have considered the extent to which this version of „Reason‟s 

dream‟ can be usefully understood as fantasy (e.g. Walkerdine, 1988). 

 

In the illustration above, the beginning of the scene can be interpreted to show that the male 

mathematician is experiencing pleasure through entering the room, and smelling the perfume of 

the woman he loved as these are associated with her. He is also experiencing pleasure through 

remembering the encounter with her. These re-experienced pleasures derive from the original 

experience with her, which was imbued with feeling - but they also reformulate that experience, 

as they reverberate with pleasures experienced in practising mathematics. Such instances of 

emotion are experienced by individuals who already have beliefs and attitudes that are to a great 

extent culturally transmitted by the person‟s „significant others‟, such as parents, siblings, 

teachers. But there is also a role for the media and other means of communication, which 

transmit images of mathematics and mathematicians in popular culture (Appelbaum, 1995; 

Evans, 2003, 2004; Mendick, 2006).  

 

Emotion can also arise through an association with objects or ideas different from those to 

which it was originally linked. Psychoanalytic approaches see this as happening through the 

capacity of an affective charge to move from one idea to another along a chain of associations 

by displacement. A number of examples are given by Evans (2000, pp. 116-9). The following 

excerpt from another film featuring a mathematician illustrates the meaning of displacement, 

and how it works. 

 

In Smilla‘s Feeling for Snow (Eichinger, Moskowicz, & August, 1997), the heroine, who 

investigates the mysterious death of a young boy in a block of flats in Copenhagen, is also a 

mathematician. In one scene, where she is having a meal with a man who clearly has strong 

feelings for her (apparently unreciprocated), she is describing how difficult it was for her to be 

relocated from Greenland to Denmark, as a young girl: 

 
He: And you were never happy here? 

She: The only thing that makes me truly happy is mathematics … snow … ice … numbers [She 

smiles.] To me the number system is like human life. First you have the natural numbers, the ones 

that are whole and positive, like the numbers of a small child. But human consciousness expands 

and the child discovers longing. Do you know the mathematical expression for longing? [He 

shakes his head.] Negative numbers, the formalisation of the feeling that you're missing 

something. Then the child discovers the in-between spaces, between stones, between people, 

between numbers – and that produces fractions. But, it's, it's like a kind of madness, because it 

doesn't even stop there…. There are numbers that we can't even begin to comprehend. 

Mathematics is a vast open landscape: you head towards the horizon, it's always receding … like 

Greenland. And that's what I can't live without, that's why I can't be locked up…. 

He: Smilla, can I kiss you? [She moves away.] 

Illustration from Smilla‟s Feeling for Snow (Eichinger, Moskowicz, & August, 1997) 

 
This scene again associates mathematics with beauty and seduction: here we have a beautiful 

female mathematician herself talking about mathematics. As we listen to her talk, what comes 

across most strongly is her longing … for numbers, mathematics, Greenland, and the sense of 

loss as she sees them “always receding”: the linking of these signifiers forms a chain of 

signification. The original (in this excerpt) feeling of loss and longing appears to relate to 

Greenland, which itself may stand for another object, such as her dead mother; that feeling is 

displaced onto mathematics, and in turn onto the negative numbers – that part of mathematics 

which for her “formalises” the feeling of loss, and which she contrasts with the “whole and 

positive” natural numbers of the young child.  
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Thus we see that objects of popular culture such as films are sites for the articulation of 

discourses within which meanings are defined, images are built up, and hence power is invested. 

This illustrates another way in which emotions are socially organised. These different objects of 

popular culture may relate to each other as texts via intertextuality (the insertion in one text of 

ideas, terms, or images from another - see examples below). Further, discourses operating in 

one field may allow an influx of terms, symbols and ideas from other fields, that is, 

interdiscursivity (Fairclough, 2003). From our discourse theoretical perspective this points to 

the importance of key signifiers, which „arrest meaning‟, in the sense of re-articulating and 

stabilising meaningful contexts for action - though always precariously, with no guarantee of 

permanence or fixity. 

 

Research Questions 

Following on from the theoretical premises above, and from the general issues indicated in the 

introduction, we can assume that popular representations may play a major role in reinforcing 

(or challenging) long-term public images of mathematics, thereby reproducing dominant social 

and educational discourses. Furthermore, we assume that the way that mathematics is 

recontextualised in such representations may become a significant influence on subjectivity. 

This in turn indicates that it would be crucial to examine mathematics in popular representations 

by exploring questions such as:  

 From what discourses do advertisements or films draw resources in order to construct the 

public/reader/viewer/consumer as a person?  

 How do they construct him/her as knowledgeable in mathematics? 

 What branch and level of mathematics does an advertisement draw on to convey the 

intended message and consequently what level and depth of knowledge is a citizen of 

average educational experience assumed to have?  

 
In this second phase of our work these issues led us to produce the following set of specific 

research questions with which to systematically approach the advertisements data:  

 

 RQ0 To what extent do advertisements use mathematics as a resource to construct their 

messages? 

 RQ1 What kind of discourse(s) on mathematics, people doing mathematics, school 

mathematics, and/or teachers of mathematics can be identified in the images portrayed in 

our sample of advertisements? 

 RQ2 Are there changes in these discourses/images over time? 

 RQ3 On what discourses do advertisements draw to construct the public/reader as a person, 

who is knowledgeable (or otherwise) in mathematics? 

 

Methodology  

Initially, we needed to decide on several methodological issues: 

 Criteria/Indicators: how to determine whether an advertisement was an instance of a 

„representation‟ of mathematics or mathematicians 

 Fieldwork method: how to gain access to a set of newspapers that could be scanned for 

advertisements satisfying the definition 

 Sampling: how to select the sample of newspaper issues for scanning. 
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As criteria for an advertisement to qualify as containing a representation of mathematics (or 

mathematicians), we looked for one or more of the following keywords in the text: 

 mathematics; mathematician; math/s; geometry/geometrician; algebra; equation(s); 

number(s); science/scientist; calculation(s), sum(s) (or related terms); 

 the name of a prominent mathematician (such as Einstein, Stephen Hawking). 

 

Alternatively, we looked for one or more of the following graphics:  

 a graph, a formula or equation; 

 the picture of a prominent mathematician (such as Einstein, Hawking).  

 

As a fieldwork method, we decided that we would look for advertisements in a sample of 

newspapers in the Colindale Newspaper Library in London, rather than using an agency. The 

reason for this was that we were uncertain as to whether the „proxy researchers‟ available from 

an agency would have sufficient understanding of our requirements, and sufficient flexibility for 

dealing with borderline cases. 

 

For sampling, we designed the sample on the basis of readership profiles (available from British 

Rates and Advertising Data - BRAD). We decided to focus on national daily newspapers, as 

providing the most generally representative indication of advertisements placed in the British 

press. We selected three „quality‟ newspapers (Times, Daily Telegraph, Financial Times), one 

mid-market paper (Daily Mail), and two „popular‟ papers (Sun, Daily Mirror) - and 

systematically selected two periods (each 10 to 15 days long) for each of the four years 1994 

(i.e. before 1995 - see footnote 1), 1997, 2000, and 2003. This systematic sampling method 

resulted in almost 550 editions being examined from cover to cover for „mathematical‟ 

advertisements (as characterised above). However, this work yielded fewer advertisements than 

we had expected. So we added further sampling periods from 2001 (before September). At the 

same time, we decided to stop before completing the Sun sample, since no appropriate 

advertisements were found in it or the Daily Mirror. 

 

Once we had amassed our sample of advertisements, they were analysed on three levels:  

 basic characteristics: e.g. newspaper, timing, overt aim of the advert;  

 content analysis indicators, based on those used by Leiss, Kline & Jhally (1990); and 

 „semiotic‟ readings of the images of mathematics, school mathematics and people doing 

mathematics portrayed by the advertisement.  

(See Appendix A for further details on the coding categories used.) 

 

The first level relied on relatively straightforward categorisations, whereas the next two required 

interpretations of the possible meanings of the advertisements. This had the potential to 

fruitfully combine „quantitative‟ and „qualitative‟ analyses, as in the hybrid „qualitative cross-

sectional‟ analyses by Evans (2000), using a sample of semi-structured interviews. 

 

Results  

In this section, we produce a selection of initial results from the data analysis. The results of the 

trawl for advertisements are indicated in Table 1. The first notable finding is how few 

advertisements were found in which „mathematics‟, „mathematician‟, or similar terms (see 

above) figured. Of the almost 550 editions of daily newspapers examined from cover to cover, 

only 9 advertisements were found. Furthermore, they were concentrated in the quality and mid-

market papers, with none being found in the popular newspapers; see Table 1. 
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Table 1. Advertisements found in editions of daily newspapers in the systematic sample. 

 
Newspaper No. editions examined No. of Ads “Success rate” 

Times 105 4 4/105 = 4% 

Financial Times 124 0 0 

Daily Telegraph 76 1 1/76 = 1.3% 

All Qualities 305 5 5/305 = 1.64% 

Daily Mail 97 4 4/97 = 4% 

Sun   53 0 0 

Daily Mirror 88 0 0 

All Papers 543 9 9/543 = 1.66% 

 
That is, only 1.66% of the daily editions examined included an advertisement that made 

reference to mathematics, and all of these were in either the quality papers represented by The 

Times, the Financial Times, and the Daily Telegraph (various success rates ranging from 0 to 

4%), or in the Daily Mail („success rate‟ a little over 4%), the sampled representative of the 

mid-market newspapers. No advertisements making reference to mathematics were found in the 

„popular‟ newspapers, represented by The Sun and the Daily Mirror. As far as advertisements in 

the daily press are concerned, mathematics appears to be marked by its absence as being outside 

the range of attention of most ordinary people. 

 

Basic characteristics of the advertisements 

In considering basic characteristics of the advertisements, the whole sample of 15 was analysed; 

nine from the systematic sampling over the period 1994-2003, and six from the „opportunistic‟ 

sample from 1986 to 2004
3
. The product category of the advertisements are detailed in Table 2. 

We compared the results from the systematic sample with those of the overall merged samples. 

 

Table 2. Product category of the advertisements 

 
Product 

category 

Number in systematic 

sample (number in 

overall sample) 

Advertisements in systematic sample 

{Advertisements in opportunistic sample} 

Automobiles 3  (4) Jaguar (2003), Daihatsu (2003), BMW (2003)   

{Peugeot (1999)} 

Business 

Services 

3  (3) Concert (2000), Thales (2000), Sun 

Microsystems (2001) 

Study Aids --  (2) {Letts (1986), Sharp home computers (1987 

ca.)} 

Food 2  (2) 

[1 campaign] 

Quorn (2003) 

Consumer 

Telephone 

Services 

--  (1) {Mercury (1994 ca.)} 

Bank 1  (1) Abbey National (2001) 

Rail Transport --  (1) {South West Trains (2004)} 

Men‟s 

Cosmetics 

--  (1) {Givenchy (2002)} 

Total 9  (15)  

 

                                                 
3
 Of the latter, three were from The Guardian, a „Quality‟ daily not included in the systematic sampling 

procedure, two were from the Sunday newspapers (The Observer), and one (the Givenchy advert 

discussed below) from a company‟s website (though it may well have featured in print also). 
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In both our systematic and the overall merged samples, „mathematical‟ (or „scientific‟) 

portrayals seem more likely to appear in advertisements for cars and business services. 

Combining this with the information that a large percentage of „primary car buyers‟ and senior 

managers consuming business services are male, suggests that an appeal to mathematics in 

advertising in the UK is somehow gendered (cf. Williamson, 1978)
4
. 

 

It is noted that all of the advertisements found in our systematic sampling procedure were in the 

period 2000-2003, and only three of those in the opportunistic sample were published before 

1995. Thus, despite research question RQ2 above, we are unable in this paper to make any 

conclusions about changes in advertising images over time. 

 

In interpreting these results and considering the extent to which they might generalise to a 

description of advertising practices in the UK, we must express two types of caution. First, 

despite the reasonably large number of editions examined, the sampling was still „light‟, in that 

it covered only a small percentage of the editions of daily papers published during the period: 

the presence of a further three „mathematical‟ advertisements in The Guardian during the 

sampling period suggests that our sampling may have missed a substantial number of relevant 

advertisements. Second, with only 60% of our merged sample chosen by our systematic 

methods - and 40% resulting from the research team‟s reading habits or from referrals from 

colleagues, the results from the merged sample may fall short of the claims of 

representativeness that the systematic sampling sought to justify. Nevertheless, we think it is 

worthwhile to present our results for our merged sample (n = 15), since this allows us to give a 

slightly more broadly-based account. 

 

Content analysis and semiotic readings of the mathematical images presented 

Here we present a discussion of our readings of five of the advertisements, as to the content 

analysis of a key indicator, and the images they present of mathematics, mathematicians and 

school mathematics (Table 3). 

 

Table 3. Sub-sample of advertisements considered 

 
Advert Product Newspaper Year 

XJ(CO2xOTR)=low B1K Automobiles (Jaguar)  Daily Mail 2003 

"If I've got my sums right, … 

" 

Automobiles (Peugeot) The 

Guardian 

1999 

“Wednesdays are lousy. 

Certified” 

Food (Quorn) Daily Mail 2003 

“I hereby scientifically 

declare; Wednesdays stink” 

Food (Quorn) Daily Mail 2003 

π: BEYOND INFINITY Men‟s Cosmetics (Givenchy) Corporate 

website  

2002 ca. 

 
Two of the five advertisements were chosen to illustrate the range of advertisements for cars, 

one of the two markets that referred most to mathematics in our sample. The two food 

advertisements were chosen as they were paired in one campaign. The men‟s cosmetic 

advertisement for the perfume, π, was chosen for several reasons: it apparently appeals to more 

interesting realms of mathematics; by its nature, it might suggest insights concerning gender; 

                                                 
4
 It is worth noting that there is an appeal to science (and to mathematics, at least implicitly) in 

advertisements for skin creams and other cosmetic products for women, too (Heather Mendick, personal 

communication). 
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and it is perhaps the most long-lived advertisement in the sample and is the focus of much 

ongoing comment on the internet (as a web search on „Givenchy Pi‟ shows). 

 

We consider each of these advertisements in relation to several selected indicators from those 

indicated for the content analysis and the semiotic readings (see Appendix A). From among the 

content analysis indicators listed, we focused on those related to the „appeal‟ of the 

advertisement (Leiss et al., 1990), and investigated in a more „semiotic‟ fashion the images of 

mathematics and people doing mathematics. 

 

The Jaguar advertisement (Figure 1) was visually one of the most sumptuous of the 

advertisements we found: light shines onto the car from all sides, and, besides the car, the 

biggest object in the frame is the jaguar, which seems to leap off the car and to soar above 

everything else. The overt aim of the advertisement is to inform the reader and potential 

customer of the low BiK (environmental) tax payable at purchase, because of the low CO2 

emissions of the car, due to the „unmatchable‟ construction. The largest element in print is the 

equation: 

 

   XJ (CO2 x OTR) = low BIK. 

 

 
 

Figure 1. Advertisement for Jaguar 

 

Though apparently mathematical, the equation turns out on closer inspection to be somewhat 

different. Without the material in brackets, it may be a way of expressing something like „The 

XJ has the lowest BIK tax bill (in its class of car)‟ - which is what the text says further down. 

The material in brackets (which could not in any case be multiplied by the non-quantitative XJ) 

also appears to represent the „product‟ of CO2 by something undefined (which may turn out to 
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mean something like „On the Road‟). Not really the stuff of which mathematics is made
5
, this 

equation appears to be inserted to attract attention, or perhaps to allude to the high-quality 

engineering that lies behind the construction of this car. 

 

The image of mathematics presented here is that of simplicity, succinctness, precision, and an 

association with high-quality engineering, science, and consciousness of the environment. The 

implicit image of a mathematician, or of the engineer or scientist using mathematics, is of 

someone who expresses or confirms simple, straightforward statements, in this case about the 

car. The advertisement‟s appeal is thus „rational‟ (Leiss et al., 1990), as well as „sensual‟. 

 

 
 

Figure 2. Advertisement for Peugeot 

                                                 
5
 Glendinning (1998) presents an even more striking picture (a still image from a television advert for 

VW Golf), which shows a baby holding a placard, which purports to show the evaluation of an integral: 

he argues that the first two lines have been cropped (presumably to save space in the frame), and several 

errors in the reasoning have been inadvertently introduced, presumably by someone who does not 

understand mathematics. 
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The Peugeot advertisement (Figure 2) was published in The Guardian in August/September 

1999. On the overt level, it aims to inform the reader of the availability of in-car air 

conditioning “as standard” in the advertiser's models. However, this advertisement functions by 

creating a „lack‟ (Williamson, 1978); we might say that its appeal is based on „worry‟, followed 

by „relief‟ (Leiss et al., 1990). It aims to establish a need for in-car air conditioning, by 

sketching a worrying fantasy of a vindictive public road service, staffed by aggressive, nasty 

workers, who want to make the reader‟s life a misery, even (or especially) on a holiday 

weekend. The relief is provided by the advertiser's cars, which have a built-in „private‟ solution 

- personal air-conditioning. Volume 2(2) – September 2007 

Mathematics here is portrayed as “sums” - which can be used in a clever, „calculating‟ way, to 

gain advantage, to „put one over‟ on people who, perhaps do not have to work on this “hot bank 

holiday weekend”; see the discussions of the reverberations of „calculating‟ in Walkerdine 

(1997) and Evans (2000, Ch10). Here, we note that what might be an interesting mathematical 

problem – whatever its social merits – of modelling the relationship between the pattern of 

deployment of traffic cones and the resulting restriction of traffic flow, is trivialised. 

 

Anxieties around school mathematics are perhaps invoked by the mention of “sums”, and 

whether they have been “got right”. And the portrayal of the particular person who is „doing 

maths‟ is nasty and aggressive. 

 

Other plausible themes are social class antagonism, and suspicion of public services and their 

employees. This 1999 advertisement also provides an example of intertextuality, in recalling the 

UK public‟s irritation with traffic cones earlier in the 1990s, culminating in the then Prime 

Minister, John Major‟s call for a “Motorway Cone Hot-line”, aiming to allow road users to use 

their mobile phones to report any unnecessary traffic cones on a particular stretch of road.  

 

We now turn to the pair of advertisements for Quorn (a protein substitute), published in the 

Daily Mail over 4 days in March 2003 (Figure 3). The overt aim of these is to relate 

„sympathetically‟ with readers that on Wednesdays they feel the “mid–week blues” and are 

short of ideas, and to suggest that Quorn “lifts the spirits” and inspires on Wednesdays. Here the 

advertisements function by creating a worry, about under-performing or feeling low on 

Wednesdays. Allegedly this is brought on by the day itself, rather than the readers themselves. 

The advertisers then offer their product as a “solution” or „relief‟. 

 

We classified these advertisements as mathematical, since they used graphs of frequency 

distributions. On the most straightforward level, mathematics is portrayed as simple (frequency 

counts) data analysis. These statistics are used to “certify” that Wednesdays are “lousy” (due to 

“mid-week blues”), or that Wednesdays “stink” (allegedly “nobody has good ideas” that day). 

On reflection, however, we are struck by several unusual aspects of these „data‟. The headline 

language is most unscientific – “lousy” and “stinks”. The person asking for our attention is 

dressed, not as a scientist, but as a cook, complete with cooking utensil. The graphics are not 

„professional‟, but suggest an inexperienced schoolchild. And these „data‟ – problematical on 

their own terms, regarding validity of indicators, and the likelihood of reliable data production – 

could be recognised further (by some readers, at least) as fabricated.  

 

Thus we have an image of mathematics as simple frequency count analysis - and possibly as 

wrong-headed on several accounts. But the original „conclusions‟ do not matter anyway, as 

Quorn will make it all right - and, apparently, none of the maths (or “science”) was necessary, 

since it was all „rubbish‟ anyway. This is an example of a particular sub-category of 

advertisements figuring mathematics and science, which suggests that it is not necessary to be 
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concerned with mathematics, science, evidence, or argument - as you will „know‟ what to think 

anyway, with the help of the advertisements
6
.  

 

One might respond that part of the appeal of these advertisements – or part of their defence – is 

that they are „humorous‟. However, this pair of advertisements creates different subject-

positions for different readers, as do many advertisements post-1970. This differential 

positioning of readers corresponds to general processes of market-segmentation, and of 

customising of consumer goods by companies in an age of accelerated consumerism. 

 

 

 
Figure 3. Advertisements for Quorn 

 

                                                 
6
 Other examples of advertisements promoting this message in the sample, but not discussed here include 

the Mercury telephone services advert (1994 ca., The Guardian), and the BMW car advertisement (2003, 

The Times). 
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The last advertisement is for a men's perfume called π (Pi), produced by Givenchy in 2002 

(Figure 4). The picture at the top shows a man in a spacesuit looking upwards towards the light; 

to the right are two symbols of π superimposed, and to the far right, partially hidden is a bottle 

of the fragrance.  

 

 
 

Figure 4. Advertisement for Givenchy‟s Pi
7
. 

 

The overt aim of the advertisement is to announce a new men's perfume, with an appeal to a 

distinctive segment of the market - and to associate positive (masculine) qualities with it. Its 

appeal is neither „rational‟, nor related to worry/relief, as with the previous two, but might be 

characterised as „sensual‟, as was the Jaguar advert. We can note the „sensuality‟ and sexiness 

                                                 
7
 The version shown here is taken from the company‟s webpage. 

  
  

    
  
  
  
π: BEYOND INFINITY   
  
Deep in the nature of man is the will to go further than any man has ever been  
before. The quest is symbolised by the Greek letter π, which evokes infinity. Men  
are still in pursuit of the end of its innumerable string of decimals…. A pe rfume  
which is synonymous with this pioneering spirit, π celebrates internal force and  
an adventurous imagination: energy and sensuality, unruffled calm and  strength.   
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of the pictures and the text. Of course fragrances (as commodities), in most Western societies at 

least, are heavily gendered. This is reinforced by the pictures and the text in this advertisement 

(with its references to “man…”, “men…”). 

 

On the face of it, mathematics is portrayed in a much more open-ended way here than in the 

previous advertisements. In terms of the portrayal of mathematics, the mathematical object, π, 

we are told, “evokes infinity”; this is associated with the product's “pioneering spirit” and 

“adventurous imagination”. As for mathematicians, “men” are claimed to be “still in pursuit of 

the end of its innumerable string of decimals”: this allows the claims of “internal force”, 

“unruffled calm”, strength and energy to be asserted. This advertisement reinforces the 

association of masculinity and mathematics (see also Mendick, 2006). It does indeed appear to 

be designed to appeal to men, and especially those who are knowledgeable about mathematics, 

or for whom it has an allure. 

 

However, there is a problem about the portrayal of mathematics, and especially π, here. For 

people who know a little about mathematics, π does not mainly “evoke infinity” in mathematics: 

despite its infinite, non-repeating decimal expansion
8
, it is itself a finite number! And not many 

“men” are “still in pursuit of the end of its innumerable string of decimals” (!). This claim again 

seems to bring mathematics back to being basically mere calculation, despite the key reference 

to infinity. The heroic aspect of the doer of mathematics thus appears severely limited – to the 

quest for “the end of its innumerable string of decimals”. In this advertisement, mathematics is 

considered as something which can be selectively drawn on, and moulded (by the text), so as to 

produce the desired associations for the product. 

 

Conclusions and Suggestions for Further Research 

A striking result from our fieldwork, in response to research question RQ0, is that there appear 

to be relatively few advertisements where „mathematics‟ (broadly defined) is used as a resource 

in the UK daily press recently. Caution is in order because of the relatively „light‟ sampling 

used here. However, within our two samples, any advertisements portraying „mathematics‟ 

appear to be concentrated in the quality and mid-market press. Their apparent absence in the 

popular press suggests a question, as to whether mathematics, science, are being „silenced‟, 

especially in this domain, rather than being considered as a resource for public discussion for 

the average person. 

 

„Mathematical‟ and „scientific‟ portrayals appeared more frequently in advertisements for cars 

and for business services – domains traditionally identified with men (see below). The 

discussion of the Givenchy men‟s perfume advert, and that of the Jaguar car, suggests that these 

advertisements not only pick up on gender stereotypes in the wider society, but also reinforce 

and extend such stereotypes. For example, the Pi advertisement appears to promote an image of 

numbers of men engaged in a quest for “the end of its [π‟s] innumerable string of decimals” – 

which is of course misleading as to the actual activities of mathematicians or indeed of other 

men (see also the discussion of the advertisement in the previous section). Thus, in relation to 

research question RQ1, we can see that some of the advertisements we examined do allow the 

identification in their images of gendered discourses on the type of people who do mathematics; 

see also Mendick (2006). 

 

                                                 
8
 Therefore, a so-called „irrational number‟. 
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In relation to research question RQ2, about changes in the images of mathematics over time, the 

Peugeot advertisement (1999), like the other three pre-2000 advertisements in the sample (Letts 

study aids, 1986; Sharp home computers and study aids, 1987 ca.; Mercury telephone services, 

1994 ca.) drew on „negative‟ aspects of mathematics, such as its supposedly “hateful”, scary, or 

“too clever” character (see Evans, 2003), as part of their message. This tendency has not been 

apparent in the 11 advertisements produced post-2000, four of which have been discussed here. 

This may suggest a gradual change trend towards focussing on the „positive‟ aspects of 

mathematics, even if in a limited way, since around 2000. But it is difficult to be certain, with so 

few advertisements from before 2000. 

 

The portrayal of mathematics in the advertisements examined here is very often as basic 

calculation (Peugeot), or as single equations. Moreover, the equations may be meaningless 

(Jaguar), trite (“A + B = C” to indicate cooperation or “Concert” between AT & T and British 

Telecom), or erroneous (see footnote 5). Some of this result from the constraints on 

advertisements – the need to attract attention, and to project a message in an instant - but these 

messages circulate nonetheless. 

 

With respect to RQ3, on how the advertisements construct the reader as knowledgeable (or 

otherwise) in mathematics, the Quorn advertisements (and others in the sample, but not 

discussed here) illustrate a particular category of advertisements in which mathematics and 

science figure, but which suggest that it is not necessary to be concerned with the content of 

mathematics, science, or with (real) evidence or argument – as you will „know‟ what to think 

anyway, with the help of the advert. On this reading, there is a danger that the advertisements 

will help to reinforce social relations where large corporations speak to the consumer, whose 

critical faculties are „dumbed down‟ by the process – and that intellectual tools like mathematics 

that are useful for critique might be trivialised by the process. Other readers might respond more 

positively to aspects of the advertisements, such as the „knowing‟ parody of 

mathematical/scientific data in the Quorn advertisements, and find it a challenge to their 

mathematical identity to figure out the advertisement. 

 

The discussion of these advertisements, in particular those relating to Quorn, shows that the 

deceptive complexity of the processes needed to decode them „fully‟ may lead to different 

categories of readers being differently positioned vis-à-vis the advertisements. This 

differentiation parallels a process of market-segmentation, so that the same advertisement is not 

expected to „speak‟ to all readers, in the same way. This suggests that different categories of 

readers, and indeed different cultures at different times, may be expected to be (and perhaps are) 

more or less „literate‟ in reading the messages of advertisements (see Leiss et al., 1990).  

 

Nevertheless, any effects in terms of trivialisation of evidence, data, science, and mathematics 

are not without danger for the company commissioning such advertising. It may want to market 

some of its products on the basis of scientific production processes, and it implicitly appeals to 

research on physics and engineering in the case of automobile producers, nutrition for food 

producers like Quorn, or to skin care for cosmetic producers (see also Glendinning, 1998). 

 

The consequences for citizens/consumers of assumed limitations on their „mathematical 

literacy‟ are not restricted in their consequences to their general appreciation of the role of 

mathematics and science in the surrounding culture. Many medical treatments involving 

medication, for example, include written instructions which require the reader to make choices 

in the use of the medication, based on information and conditions that often have a numerate 

aspect (see Eagle, Reid, Hawkins & Styles, 2005). 
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The analysis so far suggests several lines of further research. There are links to be made with the 

analysis of films, in this project. Television, cinema, internet, and further print advertising might 

be investigated, including that in „niche‟ publications, such as educational journals for 

advertisements on teaching aids, and trade or professional journals for job advertisements. It 

would also be useful to investigate the aims and images of mathematics of those working in 

advertising agencies, who were responsible for some of the campaigns discussed here. 

Comparative work would be useful, especially between the UK and cultures with possibly 

different levels of numeracy
9
. 

 

There is also a need to look comparatively at discourses in fields of activity such as educational 

policy making, by examining official documents promoting mathematics learning in the EU or 

in the UK, on the one hand, and discourses constructed in recent films and advertising, on the 

other, to see whether intersections or cross-fertilisations among them can be located.  

 

Leiss et al. (1990) point to the possibility of a given culture of „consumers‟ of advertising being 

„educated‟ over time through changing forms and strategies of advertising. This could relate to 

current UK government policies on advertising and discussions on Corporate Social 

Responsibility (CSR). 
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Appendix A. Coding Frame for Advertisements 

 

Basic Characteristics 

Advertisement No. : RSj – from systematic sample; Ai – from opportunistic sample 

Advertisement Description: „strapline‟ (quotation of key text) 

Product Category  

Brand 

Publication Name, Year, Date 

Overt Aim of Advert 

 

Content Analysis Indicators (drawn from Leiss et al., 1990) 

Appeal: motivational/persuasive technique: rational, worry/relief, sensual, testimonial  

[categories apparently not exhaustive – Leiss et al., 1990, Fig. 9.27, p268] 

Display Area Allocation: % devoted to text, as compared with % for visuals 

Pattern of Combination of Elemental Codes (Product, People, Setting): product-information, 

product-image, personalised, life-style 

Values: quality, leisure/work ethic, progress/tradition, individualism/family. 

 

Semiotic Indicators (see also Mendick, Moreau & Epstein, 2007) 

Public Images/Discourses of mathematics: 

Complex language, meaningless/“beyond understanding” to most 

Powerful language of nature/science, technology/human behaviour  

Satisfying activity for own sake: puzzles, intellectually stimulating/beauty, patterns to be 

appreciated aesthetically 

Useful: positive - individual‟s everyday affairs, business, „save the world‟; negative - 

militaristic, destroys environment [NB links with science, technology]; useless 

 

Public Images/Discourses of school mathematics 

Elite subject/accessible to all 

Scary, humiliating experience 

Boring 

 

Public Images/Discourses of people doing mathematics 

Not like ordinary people: unusual intelligence, brilliance 

Madness/eccentricity/obsession 

Nerds, Geeks 

Rational, cool, lack of emotion 

Lack of social skills, ability to communicate, to relate: a compensation 

 

Public Images/Discourses of people teaching mathematics 

Clear-headed, “calculating”/Absent-minded 

Impatient, cruel 

Lack of social skills, ability to communicate 
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Abstract 

The paper analyzes adult mathematics education from a cultural perspective. Specifically, its 

purpose is to broaden our comprehension about this field of knowledge using as a theoretical 

tool-box an Ethnomathematics perspective founded on post-modern thought, post-structuralism 

theorizations and Wittgenstein's work developed in his book Philosophical Investigations. This 

Ethnomathematics perspective allows us to study the Eurocentric discourses that constitute 

academic mathematics and school mathematics; to analyze the effects of truth produced by the 

discourses of academic mathematics and school mathematics; to discuss issues of difference in 

mathematics education, considering the centrality of culture and the power relations that 

institute it; and to problematize the dichotomy between „high‟ culture and „low‟ culture in 

mathematics education. Taking elements of the empirical data produced in many years of 

fieldwork with peasants of the Brazilian Landless Movement who participate in adult education 

courses as students or as teachers, the paper discusses some aspects of this social movement, 

especially the educational work they are developing; it outlines the theoretical background that 

supports the idea that there are different mathematics; it presents and analyzes some elements of 

the mathematics produced by the Landless peasant form of life, establishing relations with 

school mathematics, problematizing curricular issues of adult mathematics education. 

 

Key words: ethnomathematics; different mathematics; culture and mathematics education; 

peasant adult mathematics education. 

 

Introduction 

This paper analyzes adult mathematics education from a cultural perspective. More specifically, 

its purpose is to enlarge our comprehension about this field of knowledge using as a theoretical 

tool-box an Ethnomathematics perspective founded on post-modern thought and post-

structuralism theorizations, mainly Foucault‟s work (2002, 2003).
1
 Moreover, the ideas 

discussed in the paper are rooted in what I have been learning with peasants of the Brazilian 

Landless Movement who participate in adult education courses as students or as teachers. They 

inspire my academic life and provide the empirical data as well as the guidelines for the ideas I 

                                                 
1
 In considering the Ethnomathematics' perspective as a theoretical tool-boxI am following Gilles Deleuze 

who argues that "a theory is exactly like a box of tools. It has nothing to do with the signifier. It must be 

useful. It must function. And not for itself. (...). We don't revise a theory, but construct new ones (...). A 

theory does not totalize; it is an instrument for multiplication and it also multiplies itself.(Bouchard, 1977, 

p. 208) 
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present here
2
. Such ideas have as their kernel the discussion about the uses of different 

mathematics in adult mathematics curriculum, which will be developed in the next sections of 

the paper. The first gives a glimpse of some aspects of Landless Movement, especially the 

educational work they are improving. The second section outlines the theoretical background 

that supports the idea that there are different mathematics and the third presents empirical data 

that show two different mathematics: one mathematics produced by a „form of life‟ found in 

Landless peasant culture and another mathematics produced by a „form of life‟ found in school 

culture.  

 

Setting the scene: Brazilian Landless Movement and its struggle for land and 

education 

Hardt and Negri (2000) begin their well-known book Empire, saying that “it is materializing 

before our very eyes (...) [since] we have witnessed an irresistible and irreversible globalization 

of economic and cultural exchanges” (p. 11) which instituted “a global order, a new logic and 

structure of rule – in short, a new form of sovereignty. Empire is the political object that 

effectively regulates these global exchanges, the sovereign power that governs the world.” (p. 

11). This new imperial order is taken as a background to this paper, considering the importance 

of attempting to understand adult education as a field of knowledge as well as the contemporary 

social movements and their educational processes within this new world configuration 

characterized by the “absence of boundaries”, in which “the rule of the Empire operates on all 

registers of the social order, extending down to the depths of the social world” (Hardt & Negri, 

2000, p. 15).  

 

Among the many struggles of social movements that could be analyzed in their relationship 

with education, especially mathematics education, we can situate the struggles for land reform 

carried out by the Brazilian Landless Movement. This movement is well known in the 

international scene mainly due to the „new‟ aspects it has brought to education, as written in the 

official Movimento Sem Terra‟s (MST, 2003) website:   

 

Landless Movement, in Portuguese, Movimento Sem Terra (MST) is the largest social movement 

in Latin America with an estimated 1.5 million landless members organized in 23 out of 27 states. 

The Landless Movement carries out long-overdue land reform in a country where less than 3% of 

the population owns two-thirds of the land on which crops could be grown. Since 1985, the MST 

has occupied unused land where they have established cooperative farms, constructed houses, 

schools for children and adults and clinics, promoted indigenous cultures and a healthy and 

sustainable environment and gender equality. The MST has won land titles for more than 250,000 

families in 1,600 settlements as a result of MST actions, and 200,000 encamped families currently 

await government recognition. Land occupations are rooted in the Brazilian Constitution, which 

says land that remains unproductive should be used for a larger social function. 

 

The educational process that has been developed by the MST over its 22-year history must be 

understood beyond schooling, since each landless subject educates her/himself through her/his 

participation in the everyday life of their communities and through a wide range of political 

activities developed by the Movement. This means that the children, youth and adult peasants 

are educated by the multiple facets of the struggle for land, which produce very specific social 

identities. Nevertheless, these social identities do not form something compact, uniform, in 

which hundreds of family from different social strata become a unified whole, homogenized by 

the struggle for land.  

                                                 
2
 This paper is an extended version of the plenary talk given at the 13rd Adult Learning Mathematics 

Conference (Belfast, 2006). 
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To look at this social movement through such lenses implies that if there is some kind of 

intention of establishing a „landless identity‟. But in their educational processes there is a sort of 

rebellion against fixing one social identity. In summary, the landless educate themselves in the 

struggle - in the occupations, the marches, in their ways of organizing the settlements, through 

their cultural artefacts – learning the many possible meanings of „being landless‟. There are 

many axes – such as those of gender, sexuality, ethnicity –- which in their crossovers ultimately 

shape multiple landless identities, multiple ways of giving meaning to the struggle for land. In 

summary, it can be said that the peasant culture of the Brazilian Landless Movement is marked 

by difference.  

 

The schooling activities developed by the Landless Movement cover child education, 

elementary and high school education, teacher training courses and projects of education of 

youths and adults. As shown in the MST website, the Landless Movement Schooling Project 

involves 1800 schools in camps or settlements (grade 1 to 8), with 160 thousand students and 

3900 teachers; 250 educators who work with children up to 6 years; 3000 educators working 

with 30 thousand peasants of literacy and numeracy projects of adult education; and teacher 

training courses implemented in partnership with public and private universities around the 

country. 

 

This schooling project, according to one of the Landless Movement official documents, sees the 

need for  

 

two articulated struggles: to extend the right to education and schooling in the rural area; and to 

construct a school that is in the rural area, but that also belongs to the rural area: a school that is 

politically and pedagogically connected to the history, culture, social and human causes of the 

subjects of the rural area   (Kolling, Cerioli & Caldart, 2002, p. 19).  

 

The movement has dedicated itself to conceiving the schooling of its children, youths and adults 

paying attention to these two struggles. Such struggles contribute to the guidelines for its adult 

mathematics education using the peasant culture as a key issue to the teaching and learning 

processes related to mathematics. However, reference to this valorisation does not deny the 

relevance of acquiring mathematical tools connected to academic mathematics that can improve 

the uses of new technologies for managing the production in rural areas and can allow the adult 

learners to go further in their schooling trajectory. As it will shown in the next section, these 

ideas are strongly connected to the field of Ethnomathematics. 

 

Ethnomathematics as a theoretical tool-box 

In its mathematics education trajectory the Landless Movement has been inspired by 

Ethnomathematics ideas, which were first proposed by Ubiratan D‟Ambrosio, in the 1970s 

(1991, 2001), at a time when issues concerning culture began to be strongly considered  in Latin 

American People Education, as conceived by the Brazilian educator Paulo Freire. Since then 

Ethnomathematics has become a broad, heterogeneous field of knowledge. The work done with 

peasant social movements in the Brazil (Knijnik, 2002, 2005, 2006) contributes to our 

understanding of the landless adult mathematics education and allows us to view 

Ethnomathematics field through a new lens. But how can one describe this new lens? and what 

theoretical perspectives support them?  

 

To answer such questions we must consider post-modern thinking, as enunciated by authors like 

Bauman (1997), and post-structuralist theories, specifically the work of Foucault (2001, 2003) 

and Wittgenstein (2004). In considering a post-modern perspective, I follow authors like Veiga-
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Neto, when he says that it “rejects a totalized thinking, the illuminist meta-narratives, the 

universal referentials, the transcendencies and essences, that, imploding modern Reason, leave it 

in the shards of regional rationalities, of particular reasons” (Veiga-Neto, 1998, p. 145). It is 

these “shards of regional rationalities, of particular reasons”, that occur in the mathematics used 

within the peasant cultures of Brazil, that are of concern to Ethnomathematics. Post 

structuralism, on the other hand, contributes to the Ethnomathematical perspective with its 

“aims to expose structures of dominations by diagnosing „power/knowledge‟ relations and their 

manifestations in our classifications, examinations, practices and institutions. It aims to produce 

an „incredulity towards meta-narratives‟, to disassemble the structures, the „moves‟ and 

strategies of official discourse” (Peters & Burbules, 2004, p. 5). These aims were the productive 

inspiration for the Ethnomathematical perspective presented in my more recent studies (Knijnik, 

2004, 2005, 2006), when I said that  

 

it allows us to study the Eurocentric discourses which constitute academic mathematics and school 

mathematics; to analyze the effects of truth produced by the discourses of academic mathematics 

and school mathematics; to discuss issues of difference in mathematics education, considering the 

centrality of culture and the power relations that institute it; and to problematize the dichotomy 

between “high” culture and “low” culture in mathematics education (Knijnik 2006, p. 121). 

 

This Ethnomathematical perspective assigns a central role to the notion of culture. It is seen as a 

human production, which is neither fixed, determined nor closed in its meanings. This way of 

conceptualising culture implies that it is a conflictive, unstable and tense terrain, undermined by 

a permanent dispute to impose meanings through power relations. Culture is not considered as a 

body of „traditional‟ knowledges or as an inert set of knowledges transmitted from generation to 

generation. Culture is taken as a system of meaning, through which people signify the multiple 

dimensions of their life. This includes their way of dealing with counting, measuring - all those 

issues we learn to call „mathematics‟ in our schooling processes. This system of meaning is not 

static, but is repeatedly re-invented. From this perspective, it may possible to assume that there 

is a close connection between mathematics and culture: mathematics produces culture, but it is 

also produced by culture. However, what we usually call „mathematics‟ is not a social 

production resulting from all our efforts; it does not incorporate mathematical contributions of 

all cultures, from the west and east, from the north and the south. Rather, we will see that the 

mathematical heritage of humankind is identified only with Western academic mathematics; the 

mathematics produced by the Western mathematicians. Identifying only part of the world‟s 

mathematical knowledge as „the‟ mathematics masks power relations that legitimises a very 

specific way of producing meaning - the Western, white, male, urban and heterosexual way. 

 

In summary, we can say that what we call „mathematics‟ is a very specific way of interpreting 

the world, a way constituted by a very specific language, marked by a very specific grammar, 

closely connected to its uses, to a form of life. We, mathematics educators, are aware of this 

form of life, of this language, this grammar. We know how often its marks can be seen in 

teaching-learning school pedagogical processes, as well as in adult education. 

 

Lately, I have attempted to go further in discussing these Ethnomathematics issues using the 

ideas of the German philosopher Wittgenstein especially those established in his work 

Philosophical investigations (2004). Wittgenstein‟s theorizations about notions such as 

language-games
3
, grammar and forms of life

4
 allow us to consider as mathematics other 

                                                 
3
 As mentioned by Glock (1996, p. 193), "the term 'language-game' is the result of Wittgenstein's 

extending, from 1932 onwards, the game analogy to language as a whole. (...) Like a game, language has 

constitutive rules, namely those of grammar. Unlike strategic rules, these do not determine what 
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mathematical knowledge besides the one usually identified by „the‟ mathematics. His theoretical 

approach enables to consider different adult mathematical practices as mathematics in 

Wittgenstein words, different language-games, produced by different forms of life. Following 

Wittgenstein, we can say that the language-games associated with the Landless peasant's form 

of life are different to the language-games associated with the school's form of life and that such 

specific grammars produce different mathematics. In this I assume that there is more than „a 

single‟ mathematics, denying the idea that the adult mathematical practices found in everyday 

life of diverse cultural groups are mere „applications‟ of what is known as „the‟ mathematics. 

Further, I assume there are many mathematics, all of them having family resemblances, as 

Wittgenstein highlighted. 

 

However, it is important to stress that all these different mathematics do not have the same 

social value. From sociology we learn that there is one that is legitimized in our west culture: 

the one produced by the mathematicians at the academy. Academic mathematics, produced by 

the socially legitimated group that has the capability to „produce‟ sciences is most valuable from 

the social standpoint. So, it is not a question of speaking naively about different mathematics, 

but of considering that these mathematics are, in terms of power, unequally different. For 

example, non-hegemonic groups like the Brazilian landless peasants are interested in learning 

the academic mathematics, because this may be a condition to access a more highly skilled, 

better paid job, or to achieve one‟s productive activities on more competitive levels. Therefore, 

when one refers to different mathematics, what is at stake is not simply the replacement the 

teaching of academic mathematics in its re-contextualized form (the school mathematics) by the 

other mathematics. There is not a single way of producing mathematics, even if we know that 

there is one which is acknowledged as a „science‟, which must necessarily be taught.  

 

Among these different mathematics we can include the mathematics produced by non-

hegemonic groups like the Landless Movement, the mathematics I had called popular 

mathematics, even though I realised the theoretical difficulties involved in the use of the 

adjective „popular‟ (see Knijnik, 2006) In order to avoid such difficulties, in more recent time I 

used the term „peasant mathematics‟. The next section of the paper is about some peculiarities 

of this „peasant mathematics‟. 

 

                                                                                                                                               
move/utterance will bring success; but rather what is correct or makes sense, and thereby define the 

game/language. (...) We learn the meaning of words by learning how to use them, just as we learn how to 

play chess, not by associating the pieces with objects, but by learning how they can be moved".  
4
 About this notion of Wittgenstein there is an interesting debate among the philosopher's interpreters 

concerning whether it has the same meaning when used in the plural or singular and to what extent it 

compasses both biological and cultural dimensions. For the purposes of this paper it is relevant to 

highlight that in his late work (corresponding to his work "Philosophical Investigations") Wittgenstein 

considered that "the meanings arise by the use of the words, mediated by rules, which emerge from our 

social practices, our habits, our form of life." (Condé, 2004, p. 52).  
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Two different mathematics  

One of the research projects implemented with the Landless peasants had as its goal to examine 

oral mathematics practiced by adults of that peasant culture. We were interested in knowing 

more about their oral mathematics that involving addition, subtraction, multiplication and 

division. As we have observed in the fieldwork, oral mathematics practices are present in the 

everyday life of the peasants who participate in this social movement. Their low levels of 

schooling meant that they were not aware of written algorithms but required the constant use of 

oral mathematics to recall specific rules. However, in the context of adult education in Brazil, 

there is a sort of „forgetfulness‟ about this world outside school, about this mathematics with its 

different uses and its grammar. In curricular terms, it is useful to investigate the meanings 

produced by this „forgetfulness‟, by the dichotomization and antagonism of the school 

mathematics and the peasant mathematics, specially the language-games that shape their oral 

practices. The investigation of such meanings may lead to a localized and partial achievement of 

a „curricular justice‟. Cornell (1995) defines this as curriculum organization which takes as one 

of its principles consideration of “the interests of those who are at a disadvantage” (Connell 

1995, p. 12).  

 

I want to make explicit three rules that shape the oral mathematics grammar produced by the 

Landless peasant form of life.
5
 The first concerns the close ties between oral calculation 

strategies and the contingencies in which they are situated. For example, a peasant explained 

that, on estimating the total value of what he would spend to purchase inputs for production, he 

rounded figures „upwards‟, ignoring the cents, since he did not want “to be shamed and be short 

of money when time comes to pay”. However, if the situation involved the sale of some 

product, the strategy used was precisely the opposite. In this case, the rounding was done 

„downwards‟, because “I did not want to fool myself and think that I would have more [money] 

than I really had.” What was observed is that, differently from the school mathematics grammar 

that emphasizes the uses of written processes and the „forgetfulness‟ of the context (as discussed 

by Walkerdine (1988)) the Landless oral mathematics language-games are strongly 

contextualized and involve complex reasoning. As part of the peasant mathematics grammar, 

the oral mathematics rules (like the ones presented above) are marked by immanence. On the 

other hand, as shown in textbooks and other instructional materials, at school it is taught that to 

round figures „upwards‟ or ‟downwards‟ one must only take into account whether the amount of 

cents is more or is less than fifty. This rule - part of the school mathematics grammar - is 

marked by abstraction, transcendence. It is clear that there are similarities between the oral 

peasant mathematics rules presented above and the written school mathematics rules. Following 

Wittgenstein, we can say that those language-games (shaped by their specific rules) have family 

resemblances. They are similar, but not the same. There is a peculiarity that distinguishes the 

peasant mathematics rationality from the school mathematics rationality: the immanence of the 

former versus the transcendence of the latter. 

 

A second rule of oral mathematics language-games refers to the strategy of adding, based on a 

decomposition of the values to be orally calculated. This is what happened with one of the 

students in the workshop given by the students, when faced with a situation in which he had to 

calculate 148+239. He explained that, “first one separates everything [100+40+8 and 

200+30+9] and then adds up first the numbers that are worth more [100+200, 40+30, 8+9]. (…) 

This is what really counts”. This rule was found among almost all adults who said that they 

„were good‟ at mental calculation. Differently from the addition algorithm taught at school, in 

                                                 
5
 This part of the text is based on what was discussed in Knijnik, Wanderer & Oliveira (2005). 
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oral procedures the peasants considered all the values of each parcel that was involved and how 

much difference it would make if it were hundreds, tens or units, i.e., they prioritized the values 

that contributed more significantly to the final result. 

 

This priority also emerged when the numbers involved in the calculation were decimals. It is 

observed that recurrently, the peasants use decomposition „to make up integers‟. This strategy 

was employed by Dona Nair, a retired settler, who, as a child, attended school for only one 

year, and did not learn to read or write. On explaining the way she used mental calculation in 

her daily activities, she referred to a situation in which two products are purchased, one of them 

costing R$2.70 and the other R$2.90. She said that to find the amount to be spent, she first of all 

adds up the integers and then the cents, as follows: “2+2 makes 4. I complete the 90 [cents] with 

10[cents] of the 70[cents] to make another 1 real. So 4+1 completes 5 reais, plus the 60[cents], 

and I have 5 and 60.” Like those previously mentioned, also in situations involving decimals, 

what is prioritized in the calculation process are integer values that, according to the peasants, 

are „more relevant‟ to the final sum, a relevance which is given by their culture. Here, again, 

one can see the immanence that characterizes the rules shaping the peasant mathematics 

grammar, i.e., the immanence of peasant rationality, which differs from the immanence of 

school mathematics rationality. 

 

A third rule concerns the duplication strategy present in the oral multiplications, a process 

similar to that used in ancient Egypt (Gillings, 1982; Peet, 1970). This could be seen in an 

interview with Seu Nerci, an illiterate landless man, which had been filmed and used in as 

pedagogical material in a training course for Landless pre-service adult education teachers. 

When multiplying 92×R$0.32 (corresponding to 92 litres of milk produced and sold at 32 cents 

of real
6
 [R$0.32] a litre), he first doubled the value of R$0.32, and obtained R$0.64; then he 

repeated the „doubling‟ operation twice, finding the amount of R$2.56 (corresponding to 8 

litres). He added to this the value of 2 litres calculated previously, and thus found the value of 

10 litres of milk (R$3.20). The next procedure was to successively double the values found, i.e., 

he obtained the result of 20, 40 and 80 litres. Keeping „in his head‟ all the values reckoned 

throughout the process, Seu Nerci ended the operation by adding to 80 litres, those 

corresponding to 10 litres and 2 litres (calculated previously), and thus found the result of 

92×R$0.32.  

 

Seu Nerci never went to school. When he was a child, the closest school to his home was 20 

miles away and there was no public transportation in the rural zone where his family lived. 

Since early childhood, boys and girls were introduced into agricultural labour and no children 

went to school. He did not use pencil and paper to write down the sums as he multiplied them. 

When the video was made he suddenly withdrew to another room at the back of his house to 

perform the multiplication, only reappearing after he had come to the final result. After 

consideration other characteristics of peasant oral mathematics were apparent. The first 

concerns the need, explicitly mentioned by the adults, „to concentrate to think‟. Like Seu Nerci, 

most of the adults observed doing oral calculation practices became deeply involved in the act 

of reckoning, in an attitude of isolation and introspection. But, unlike Seu Nerci, many of the 

literate adults observed usually took notes during their oral calculations. The notes were used as 

„markers‟ throughout the process, especially in those involving greater complexity. 

 

In summary, we have observed the high level of reasoning involved in the landless oral 

mathematics. Even from the perspective of what we consider „the‟ mathematics, there is a 

                                                 
6
 Real is the Brazilian currency which corresponds to 50 cents of the US dollar.  
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broad, important set of subjects operating in this oral mathematics, which shows the family 

resemblances of peasant mathematics and school mathematics. Another aspect that emphasizes 

such resemblances is the introspective attitude of the peasant when doing oral calculations, 

similar to that take on by those who work in academic settings.  

 

It is clear that peasant oral mathematics is neither as formal nor as abstract as school written 

mathematics. Following the work of Wittgenstein (2004), we can admit the existence of these 

two mathematics, of two different rationalities associated with specific forms of life, each of 

them producing its own grammar. But we cannot say from an epistemological standpoint that 

one is more valuable than the other.  

 

Final remarks 

The issues I attempted to discuss in this paper are no more than provisional, unmarked by hopes 

for certainty, in the sense given by Stronach and Maclure (1997). Although provisional, they 

open new possibilities to look at the Ethnomathematics field, constituting a theoretical tool-box 

that allowed me to examine the data collected in fieldwork with the Landless adult peasants 

through a new theoretical lens. Observing these adults practicing their oral mathematics I 

understood the importance of analyzing it from a cultural perspective. It has been shown that the 

peasant oral mathematics is produced by the Landless culture and at the same time, such a 

culture is produced by this specific mathematics. Since this mathematics is part of their way of 

giving meaning to life, it would be almost impossible to ignore the necessary close connections 

between oral mathematics and the school curriculum. It cannot be assumed that at school the 

peasants could leave „part of themselves‟ outside. When they come to adult education projects, 

their peasant culture comes with them, even when the school curriculum tries to impose a sort of 

„forgetfulness‟ about who they are, the music they enjoy, the food they appreciate, the grammar 

they use when talking, the grammar they use when adding, subtracting, multiplying and 

dividing. When this subtle imposition of denying their culture occurs, it is not surprising to see 

that it brings with it a resistance process. This resistance can be expressed by adult peasants 

through rejection of school (no-learning attitudes); can be expressed by pretending that they 

accept such an imposition (simply pretending). When they go outside school, their peasant 

mathematics is revived, showing that it can survive the school conservative practices that are 

bound by only one kind of rationality, one kind of language-games as mathematics. Maybe it 

will be possible to enlarge our adult mathematics education world, including other mathematics, 

other rationalities other forms of life. This enlargement may produce broader repercussions and 

open possibilities for a better relationship among people from different parts of the world and 

from different cultures. If so then our dreams of solidarity in our societies can be fulfilled. 
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