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Predicting Introductory Programming

Performance: A multi-institutional

multivariate study

Susan Bergin* and Ronan Reilly
Department of Computer Science, NUI Maynooth, Co. Kildare, ROP

A model for predicting student performance on introductory programming modules is presented.

The model uses attributes identified in a study carried out at four third-level institutions in the

Republic of Ireland. Four instruments were used to collect the data and over 25 attributes were

examined. A data reduction technique was applied and a logistic regression model using 10-fold

stratified cross validation was developed. The model used three attributes: Leaving Certificate

Mathematics result (final mathematics examination at second level), number of hours playing

computer games while taking the module and programming self-esteem. Prediction success was

significant with 80% of students correctly classified. The model also works well on a per-institution

level. A discussion on the implications of the model is provided and future work is outlined.

1. Introduction

Student retention on third-level Computer Science (CS) and Information Technol-

ogy (IT) courses is a significant problem. Students find computer programming

difficult and struggle to master the core concepts. Identifying struggling students can

be difficult as introductory programming modules tend to have a very high student to

lecturer ratio and thus lecturers do not know how well students are doing until after

the first assessment. Given the typically high number of students, marking the

assessments can take a considerable length of time. Even if the assessment is

indicative of likely overall performance on the module, it may be too late for students

to withdraw from the course or for instructors to intervene to prevent struggling

students from failing. This is a cause of great concern for computer science educators

and has led to a body of research in the area. Although many studies have interesting

results it can be hard to know how to apply the results to other educational settings

with different parameters, for example language being taught and assessment

structure. Furthermore, the factors examined are often dependent upon the students’
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experience on the module and with the material and therefore it is difficult to know

how predictive the factors would be if measured at the commencement of the

module.

A model that could predict likely programming performance in the first few weeks

of a module would considerably help to alleviate this problem. To build such a model

would require (1) the identification of early predictors of performance on an

introductory programming module and (2) the appropriate implementation of a

scientifically sound, predictive statistical model.

This paper describes such a model. A study on early identifiable factors that

influence performance on an introductory programming module is presented and a

model using these factors is developed. The paper is structured as follows. First, a

literature review is provided, followed by a description of our study on early

identifiable factors. Then the procedures used to prepare the data for analysis are

outlined and subsequent analysis and results are presented. A discussion of the

findings is presented and a brief outline of an epilogue study confirming the main

findings is provided. The paper concludes with suggestions for future work.

2. Review of Literature

Predictors of performance on introductory programming modules studied to date can

be broadly classified into the following groups: previous academic and computer

experience with emphasis on exposure to mathematics and prior programming

experience; cognitive factors; and psychological factors with emphasis on perceived

comfort-level on the course. Studies within each of these categories are presented

next and a brief summary of some other interesting factors that do not fall into the

previous categories are also provided. Table 1 summarizes the predictors examined.

Finally, another factor, self-regulated learning, that has previously been found to

relate to performance in other academic domains is introduced and briefly discussed.

Previous academic experience and programming experience have often been cited as

predictors of programming success. Numerous studies, including Leeper and Silver

(1982), Honour-Werth (1986), Byrnes and Lyons (2001), Cantwell-Wilson and Shrock

(2001), Evans and Simkin (1989), and Bergin and Reilly (2005a), have found that

mathematical ability and exposure to mathematics courses are important predictors of

performance on introductory computer science modules. Similarly, Byrnes and Lyons

(2001) and Leeper and Silver (1982) found that performance in and experience of

science subjects is also important. Studies by Hagan and Markham (2000), Holden and

Weeden (2004), Evans and Simkin (1989), and Cantwell-Wilson and Shrock (2001)

have ascertained that prior programming experience and non-programming computer

experience are useful predictors of programming performance.

The role of cognitive factors in programming has also received research attention.

Austin (1987), Barker and Unger (1983), Gibbs (2000), Hostetler (1983), Kurtz

(1980), and Mayer et al. (1986) have investigated certain cognitive factors, including

cognitive style and abstract reasoning ability and provide useful insights into the role

of cognition in learning to program.
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In recent studies researchers have examined various psychological factors including

students’ perceived comfort-level when learning to program. Cantwell-Wilson and

Shrock (2001) in a recent longitudinal study found that the most important predictor

of students’ performance on an introductory computer science course was comfort

level, determined by the degree of anxiety a student felt about the course. Goold and

Rimmer (2000) identified that ‘dislike of programming’ influences performance on an

introductory programming course. Ramalingam et al. (2004) and Wiedenbeck (2005)

identified a positive relationship between students’ mental models of programming

and self-efficacy for programming and performance and suggested that knowledge

organization directly affected success and strengthened post-efficacy. In a recent study

by Bergin and Reilly (2005a), it was found that a student’s perception of his or her

understanding of the module had the strongest correlation with programming

performance. In addition, Rountree et al. (2002) found that the grade a student

expected to achieve in an introductory module was the most important indicator of

performance. Ventura (2005) examined predictors of a graphical design-centric

objects-first Java course and found that student effort (as measured by the number of

hours spent using the labs) and comfort level were the strongest (positive) predictors

of success. Newsted (1975) in a study of introductory Fortran, students found that two

of the most important predictors of performance were perceived ability and time spent

working on the course and working with other students. While perceived ability was

found to be positively related to performance, the number of hours spent working on

the course was negatively related to performance.

The previous sections have outlined the main body of research on factors that

influence introductory programming success. Other factors have also been

considered, albeit often in one-off studies that do not fall into the previous categories.

In particular, two factors have been investigated in several studies and have been

found to relate to programming performance. The factors are (1) the number of

hours a student spends playing computer games and (2) the number of hours spent

working at a part-time job. Cantwell-Wilson and Shrock (2001) found that the

number of hours students played computer games was negatively related to

performance on an introductory computer science course. Similarly, Evans and

Simkin (1989) found the number of hours students spent playing electronic games

(both video and computer games were studied) had a negative relationship with

performance on an introductory Basic course. They also found that the number of

hours a student spent working at a part-time job negatively relates to performance.

Honour-Werth (1986) found a significant correlation between hours working at a

part-time job, r¼ 0.203, p5.1, and performance on an introductory computer

science course using Pascal.

Although numerous studies on factors that influence programming performance

have been carried out, further predictors are still required. Recently, self-regulated

learning (SRL) has become an important topic in education and psychology.

Zimmerman (1986) defines SRL as the degree to which learners are metacognitively,

motivationally and behaviourally active participants in their own academic learning.

Furthermore, Pintrich (1990), and Zimmerman and Martinez-Pons (1990) advocate
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that a complete model of SRL should incorporate cognitive and metacognitive

strategies, referred to as a ‘skill’ component, and motivational components, referred

to as ‘will’ components.

A considerable number of studies, including Pajares et al. (2000), Pokay and

Blumenfeld (1990), Pintrich (1990) and Zimmerman and Martinez-Pons (1990),

have consistently found a significant positive correlation between academic

achievement and self-regulated learning among elementary, high school, and college

students. With regard to programming performance, a recent study by Bergin and

Reilly (2005c) found that students who perform well in programming use more

meta-cognitive and resource management strategies than lower performing students.

Furthermore, high levels of intrinsic motivation and task value are also associated

with performing well in programming. A regression model based on cognitive,

metacognitive and resource management strategies was able to account for 45% of

the variance in student results.

While a considerable amount of research has been carried out on factors that affect

programming performance, our interest is on factors that can be determined early in

the academic year. Given this, a study to determine early identifiable factors that

influence programming performance was conducted. The study builds upon the

findings of previous studies and further investigates the usefulness of SRL as a

predictor of performance.

3. Research Design

This section documents the methodology used in this study. A description of the

participants, the instruments and the a priori procedures carried out on the data is

provided.

3.1. Participants

The study was carried out at four third-level institutions (post-high school) in the

Republic of Ireland in the academic year 2004 – 2005. In total, 123 students enrolled

in a first-year introductory programming module voluntarily participated in this

study. The sample was composed of 77.5% male students and 22.5% female

students. Ninety-one percent of the sample had just completed second-level

education, while 9% were mature students. Eighty-five percent of the sample had

completed their second-level education in the Republic of Ireland while 15% had

completed their second-level education abroad.

The four institutions involved in the study are referred to in this paper as Institute

A, Institute B, Institute C and Institute D. The institutes were quite different in that

one was a university, two were institutes of technology and one was a college of

further education. Typically, entry requirements for Institute A would be higher than

all the other institutes, while requirements for Institute B and C would be similar and

higher than those of Institute D. The overall aim of each module was to provide

students with introductory programming skills and the contents of each module were
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highly similar. Students in Ireland do not study programming for national

examination in secondary school (i.e. high school). An outline of the assessment

structure for each module and a content overview is provided in Table 2. The

measure of performance reported upon in this paper is the overall module mark.

At institutes B, C, and D, 85%, 70%, and 95% of the total student population

agreed to participate respectively, while at Institute A 42% agreed to participate.

Statistical tests were carried out to determine sample representativeness and

are discussed in Section 3.3. Participants were provided with an information

sheet about the research and signed a consent form agreeing to participate.

Permission for the research activities was also granted by each of the participating

institutions.

3.2. Instruments

Four instruments were used to collect data: a background questionnaire, a program-

ming self-esteem questionnaire, a self-efficacy questionnaire and a motivation and

learning strategies questionnaire. Data were collected in two study administrations. In

the first administration all surveys (background questionnaire, Programming Self-

esteem questionnaire, and the shortened Computer Programming Self-efficacy scale),

except the Motivated Strategies for Learning Questionnaire (MSLQ), were admini-

stered. The first administration was carried out early in the programming module

Table 2. Module Overview

Institute Language Concepts covered* Assessment structure

Institute A Java Variable types, selection

statements, iteration, recursion,

arrays, methods, sorting,

searching, classes and objects

30% continuous assessment, 70%

final examination

Institute B Java Variable types, selection

statements, iteration, methods,

classes and objects,

introduction to applets

50% continuous assessment, 50%

final examination

Institute C Pascal Variable types, selection

statements, iteration, arrays,

searching, sorting, linked lists

and pointers

40% continuous assessment, 20%

practical examination, 40%

final examination

Institute D VB Variable types, selection,

iteration, arrays, methods,

classes and objects

100% project

Institute D Java Variable types, selection,

iteration, arrays, methods,

classes and objects

2630% assignments, 40%

theory examination

*Not in order.
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(when the students had completed very early programming concepts – typically

variable types, selection statements and sometimes iteration) while the second

administration was completed when they were on average one-third of the way through

the material (typically around week 8 of a 24-week module). It was the intention that

both administrations would be completed closer together but this was not possible due

to timetabling and other constraints. The total time to complete all of the instruments

varied between one hour and one hour 15 minutes at the participating institutions. A

brief description of each of the instruments is provided next.

The background questionnaire collected data on a number of items including

previous academic information, for example Leaving Certificate (LC) mathematics

grade and highest LC science grade; prior programming and non-programming

computer experience; comfort level on the module, and several miscellaneous items,

including, number of hours playing games before and during the module, likely

number of hours spent studying for the module and number of hours per week

working at a (part-time) job. The questions on comfort level were based on a set of

questions used in a study by Cantwell-Wilson and Shrock (2001). The questions

examined a student’s perception of his or her level of understanding compared to the

rest of the class, his or her ease at asking and answering programming questions, his

or her general understanding of programming concepts and his or her ability to

design and complete assignments. The questions are referred to as ‘Cantwell-Wilson

and Shrock (2001) comfort-level questions’ in this paper.

The Rosenberg Self-esteem (RSE) questionnaire (Rosenberg (1965)) was adapted

to apply to programming self-esteem. The RSE scale is perhaps the most widely used

self-esteem measure in social science research. The scale consists of ten questions and

has been shown to have generally high inter-item reliability. Each of the questions

were re-worded to relate to programming self-esteem and not to self-esteem directly.

For example, the first question was changed from ‘On the whole, I am satisfied with

myself’ to ‘On the whole, I am satisfied with my programming progress’. In this paper

the modified RSE questionnaire is referred to as the Programming Self-esteem

questionnaire.

The Computer Programming Self-efficacy scale was designed by Ramalingham

and Wiedenbeck (1998) and consists of 33 items which ask students to judge their

capabilities in a wide range of programming tasks and situations. As this instrument

was administered when students had very limited experience of the module material,

a shortened version of this scale using only seven questions was used.

In this study we used the model of self-regulated learning developed by Pintrich

and his colleagues, as outlined in Pintrich (1991a). This model stresses the learners’

use of cognitive strategies and self-regulatory strategies, self-efficacy beliefs

(individuals’ judgements of their capabilities to perform a task), task value beliefs

(the importance of, interest in and value associated with a task) and goal orientation

(intrinsic and extrinsic goal orientation), (further details provided in Pintrich (1999)).

The MSLQ (Pintrich (1991b)), a self-report instrument designed to measure

students’ motivation and self-regulated learning in classroom contexts, was used to

measure this model. The MSLQ is composed of two sections: a motivation section
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and a learning strategies section. To examine components of SRL the following scales

were employed:

. Goal orientation strategies: intrinsic goal orientation scale and extrinsic goal

orientation scale.

. Task-value scale.

. Cognitive strategies: rehearsal strategies scale, elaboration strategies scale and

organization strategies scale.

. Meta-cognitive strategies: planning, monitoring and regulating strategies scale.

. Self-efficacy for learning and performance scale.

3.3. Data Pre-processing

While an in-depth discussion on data pre-processing carried out in this study is not

appropriate in this paper, it is important to note that a number of a priori procedures

were implemented to prepare the data for analysis. The procedures included (1) data

screening, (2) testing the representativeness of the sample, (3) tests of unidimension-

ality, (4) dimensionality reduction and (5) tests to ensure the underlying assumptions

of the statistical technique of choice, logistic regression, are satisfied. A detailed

description of pre-processing can be found in Bergin and Reilly (2006). A few points

from this process are worth briefly noting.

Data screening required the examination of encoded data to ensure that it was free

of coding errors. Maximum and minimum frequency values were inspected to check

that no out-of-bounds entries existed. As a more rigorous measure, each encoded

item was inspected along with totals, by an independent witness and the author, to

ensure that all data have been satisfactorily entered and computed.

An a priori analysis was carried out to verify no significant differences that existed

between the mean overall module results of the students who participated in the study

and the students who did not participate in the study. A t-test confirmed that no

significant differences existed between the mean results of students who participated

in the first administration of the study and the relevant student population at each

institute. However, statistical differences were found between the students who

participated in the motivation section (t(67)¼ 6.451, p¼ 0.001) and the learning

strategies section (t(56)¼ 7.1, p¼ 0.001) of the MSLQ at institute A and this will

have to be taken into account in the analysis. The cause of this statistical difference

was a considerably reduced sample size on the second administration at institute A.

This finding indicates that results involving the MSLQ may not be generalizable. To

alleviate this problem, two separate investigations were carried out, the first using data

gathered in the first administration and the second on the data gathered in both

administrations. Interpretation of the second investigation will need to take into

account the reduced sample size and the lack of sample representativeness.

Where multiple indicator variables were used to measure a construct, tests of

unidimensionality were performed. Cronbach’s alphas for each of the MSLQ sub-

scales and the subsequent values calculated in this study are given in Table 3. In each
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instance, the alpha values were found to be high. Test of reliability for the Cantwell –

Wilson and Shrock comfort-level questions was 0.80 and for the shortened Computer

Programming Self-efficacy scale was 0.95. Typically, Cronbach’s alphas for the

Rosenberg Self-esteem scale are in the range of 0.82 to 0.88, (Rosenberg (1965)) and

for the modified Programming Self-esteem scale used in this study the alpha value

was 0.91.

Principal components analysis (PCA) was performed on each of the multiple-item-

based instruments and components that satisfied the Kaiser criterion (all components

with eigenvalues greater than 1.0) were retained for future modelling. This resulted in

one component for programming self-esteem, one component for self-efficacy and

three components for the comfort-level questions.

The classification technique used was logistic regression. This technique makes no

assumptions about the distributions of predictor variables, that is the predictors do

not need to be normally distributed, linearly related or of equal variance within each

group and can be a mix of continuous, discrete and dichotomous variables. The

model produced by logistic regression is nonlinear and is denoted by

Pi ¼
ebOþbiXi

1þ ebOþbiXi
: ð1Þ

Like most statistical techniques, logistic regression does make some assumptions. A

considerable number of procedures was put in place to ensure that the underlying

assumptions were satisfied, including removal of outliers, procedures to reduce the

likelihood of overfitting the data, and tests to ensure the absence of multicollinearity.

4. Results

Two investigations were carried out. In the first investigation all the factors from the

first administration of the study were included, while in the second investigation all of

the factors from both administrations were considered. In total, over 40 models were

Table 3. Reliability analysis using Cronbach alpha measure for MSLQ scales as given by Pintrich

et al. and as found in this study

Scale Pintrich (1991b) Study values

Intrinsic goal orientation scale .74 .75

Extrinsic goal orientation scale .62 .56

Task value scale .90 .85

Self-efficacy for learning and performance .93 .95

Rehearsal scale .69 .73

Elaboration scale .76 .58

Organization scale .64 .63

Planning, monitoring and regulating scale .79 .83
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developed with various degrees of freedom. All models were generated using 10-fold

stratified cross-validation. With this procedure, data are randomly split into ten parts,

with each part representing the same proportion of each class. Each part is held out in

turn and the learning scheme is trained on the remaining nine parts, then the error

rate is calculated on the holdout set. In total the procedure is executed ten times on

different training sets and the results are averaged over all of the testing datasets.

4.1. Investigation 1

Numerous logistic regression models were developed using the variables from the first

administration of the study. The most significant predictor set that emerged (Predictor

Set 1) had three predictor variables, LC mathematics score (LCMATHEMATICS),

number of hours spent playing games while taking the module (WHILEGAMES) and

student values from PCA on the Programming Self-esteem scale (PROGSELFEST)

(calculated as the sum of the first component score times the standard student

response to each item in the scale). From a total of 123 cases, 102 were included in the

model. The percentage of students accurately classified was significant at 80%.

LCMATHEMATICS and PROGSELFEST were found to have a positive relation-

ship with performance, while WHILEGAMES was found to have a negative effect (the

more hours a student spent playing games the lower their performance on the module

and vice versa). Table 4 outlines the high performance of this model. Although a

considerable number of other models was developed, no superior predictor set was

found. A second predictor set (Predictor Set 2) did emerge with marginally higher

prediction accuracy 82% but with a reduced sample size n¼ 82. The predictor set

included the three predictor variables from the first model and the number of hours

students were likely to spend studying module material per week (LIKELYHOURS)

and measures of performance are provided in Table 4.

In logistic regression, probabilities are used to determine to which class an instance

(student) belongs. In general, the cut-off value is 0.5. Thus, we are not restricted

to treating our outcome as dichotomous (weak or strong) but can also classify

performance using the classification probabilities. This is an important benefit as it

allows borderline students to be identified, that is, students who are clearly not very

strong or very weak, for example students with a classification probability between

0.35 and, say, 0.65. For example, using the attributes described in Predictor Set 1, a

Table 4. Percentage of students correctly classified as weak or strong, as well as overall classification

accuracy achieved by the logistic regression models

Model

Weak students

correctly classified

Strong students

correctly classified

Overall correctly

classified

Predictor Set 1 87% 69% 80%

Predictor Set 2 .82% .81% .82%

Predictor Set 3 .96% .93% .95%
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classification model can be derived using all 102 students as training data (for

illustration purposes it is simpler to consider a single training set than 10-fold cross

validation). Twenty students are misclassified. However, analysis of the classification

probabilities indicates that ten of the misclassified students have a classification

probability between 0.35 and 0.65 and thus form a borderline group of students.

Assuming the objective is to assist weaker students, students in this borderline group

should also be monitored. Of the remaining ten students, three are classified as strong

but are actually weak and seven are classified as weak who are actually strong. If the

objective is to assist weaker students in order to improve retention, it could be argued

that the only significant error is the three students classified as strong who are weak.

4.2. Investigation 2

This investigation considered the complete set of attributes examined in the study. A

significant predictor set emerged (Predictor Set 3) but one needs to be cautious

interpreting the results due to the reduced sample size and the differences noted

earlier between the sample group and population at Institute A and Institute C. The

predictor set included LCMATHEMATICS, WHILEGAMES, LIKELYHOURS

and the self-efficacy for learning and performance scale from the MSLQ

(MSLQSELFEFF). Ninety-five percent of students (n¼ 58) were classified correctly

and the model had high performance measures, as outlined in Table 4.

5. Discussion

In this section, a review of the instruments used in this study is provided and a

discussion on the models developed is presented.

5.1. Review of the Instruments

While our Programming Self-esteem scale proved useful in our classification model,

the other two comfort-level measures, the Cantwell-Wilson and Shrock (2001)

comfort-level questions and the shortened Computer Programming Self-efficacy scale

did not add any further value to the models. The Cantwell-Wilson and Shrock (2001)

comfort-level questions, however, resulted in a slightly poorer classification model

when used with LC mathematics and game playing (omitting PROGSELFEST). This

suggests that it is measuring the same phenomena as Programming Self-esteem.

However, the Programming Self-esteem scale is a superior measure. Given that we are

trying to capture attributes at a very early stage in the programming course, only seven

questions asking students to judge their ability at specific programming tasks, from the

Computer Programming Self-efficacy scale, could be administered. Clearly, this

shortened version is not sufficient to capture self-efficacy.

Analysis of the SRL measures using independent t-tests revealed that weaker

students had lower intrinsic motivation than stronger students (t(77)¼73.298,

p¼0.001). In addition, weaker students used less meta-cognitive strategies
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(specifically, planning, monitoring and regulating) than stronger students

(t(79)¼74.566, p¼ 0.001). While, use of meta-cognitive strategies and intrinsic

motivation level do not increase the accuracy of the models (perhaps because the

information they provide is already captured in the model), this information is useful

to educators who are seeking to help students learn programming.

Many of the items in the background survey did not prove useful in the

development of the prediction models. These items included, prior programming

experience, encouragement from others to study programming, preference to work

alone or in a group when solving problems and number of hours using application

software, emailing or surfing the web before and during the early stages of the course.

Previous studies have reported conflicting results on prior programming experience.

However, in the Republic of Ireland students do not study programming in secondary

school at examination level and this may account for why it is not an indicator of

performance in this study. Our findings on encouragement from others to study

programming, preference to work alone or in a group when solving problems and

number of hours using application software, emailing or surfing the web before and

during the early stages of the course are in line with a longitudinal study carried out

by Cantwell-Wilson and Shrock (2001).

5.2. Analysis of Predictor Set 1

The fact that LC mathematics is a useful predictor is of no great surprise given our

literature review in Section 2. The Programming Self-esteem measure had never been

used before, but it can be thought of as another measure of comfort level. Considered

as such, the findings on its predictiveness are in line with previous research. The

importance of computer game playing as a predictor of performance supports the

results of Cantwell-Wilson and Shrock (2001) and Evans and Simkin (1989), who

similarly found a negative relationship between game playing and programming

performance.

Predictor Set 1 considers the largest number of students (n¼ 102). When a

separate logistic regression model is developed for each institution, prediction

accuracy remains high, with accuracies of 85% at Institute A, 96% at Institute B, 92%

at Institute C and 71% at Institute D, respectively. The lower result at Institute D can

be accounted for by the fact that only 44% students were included in the classification

due to a large amount of missing data. In most cases, LC mathematics score was

missing. A large proportion of the students at this college had obtained their second-

level education abroad and consequently did not sit the LC mathematics

examination. This is a problem for the current model. Although several substitution

schemes were examined, none were found suitable. We intend to examine other

substitution schemes to alleviate this problem and to investigate alternative

classification techniques for handling missing data better.

The order of importance of the three variables changes at the different institutions,

as illustrated in Table 5. It is interesting that the exact same ordering of predictors is

found at both Institute B and C. Both of these institutes have similar admission
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requirements and are the same type of institute (institutes of technology). As such,

students with similar academic backgrounds would attend each college and the model

appears to adjust accordingly for this. Institute A is a university and, in general, would

have a higher admissions requirement. Computer game playing at this institution is

the least important predictor as opposed to the most important at the others. It could

be interpreted that students at Institute A who, in general, would have higher entry

results, work harder and are less likely to play games. However a one-way ANOVA

test failed to reveal any statistical differences between computer game playing at

each of the institutions. An ANOVA test revealed a statistical difference between

the mean LC mathematics score at Institute A and each of the other institutes

(F(3,98)¼ 24.985, p50.001). There was no difference in the mean score at institutes

B, C and D. This could partially explain why LC mathematics is a more important

factor at Institute A. No statistical differences were found between the programming

self-esteem scores at the different institutions.

5.3. Predictor Set 2

Predictor Set 2 includes the likely number of hours a student will spend studying for

the module. The inclusion of this attribute results in an improvement in the number

of students classified as strong (from 69% to 81%), but with a slight decrease in the

prediction performance of weak students (from 87% to 82%). An ANOVA test failed

to reveal any significant differences between the likely hours studied by weak and

strong students. It appears that knowing the number of hours a strong student will

spend studying helps to classify strong students but the same is not true of weak

students. This may be caused by weak students overestimating the number of hours

they will spend studying, however further investigation is warranted.

5.4. Predictor Set 3

The measures of self-regulated learning were disappointing. The only measure that

added to the classification model was the MSLQ self-efficacy scale. This is not

surprising given the findings on the importance of self-efficacy in other studies. When

this measure is included in the model, the Programming Self-esteem measure does

not contribute any significant additional value. To determine whether the MSLQ

self-efficacy scale was a superior measure than the Programming Self-esteem scale,

Table 5. Order of importance for attributes

Institute A Institute B Institute C Institute D

1st PROGSELFEST WHILEGAMES WHILEGAMES WHILEGAMES

2nd LCMATHEMATICS LCMATHEMATICS LCMATHEMATICS PROGSELFEST

3rd WHILEGAMES PROGSELFEST PROGSELFEST LCMATHEMATICS
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albeit with a considerably reduced sample size, n¼ 58, a further logistic regression

model was developed. The model used the same student sample as the model

developed using Predictor Set 3 (n¼ 58) but used the Programming Self-esteem

measure instead of the MSLQ self-efficacy scale along with LCMATHEMATICS,

WHILEGAMES, and LIKELYHOURS. The model resulted in poorer prediction

accuracy with 88% of the students classified correctly. Given the problems of sample

representativeness in this study, it is not possible to determine if the MSLQ self-

efficacy scale measure is a truly superior measure than the Programming Self-esteem

scale, however future studies should endeavour to verify this finding.

Further analysis on the SRL measures using independent t-tests revealed that

weaker students had lower intrinsic motivation than stronger students. In addition,

weaker students used fewer meta-cognitive strategies (specifically, planning,

monitoring and regulating) than stronger students. This is in line with previous

findings on SRL and programming performance, as outlined in Bergin and Reilly

(2005c).

6. Epilogue

In the academic year 2005 – 2006 students enrolled on the introductory programming

module at Institute A were asked to participate in an additional study to verify the

effectiveness of the three factors and also to verify the suitability of logistic regression

for predicting programming performance. Students were asked to answer ques-

tions based on the three factors identified in Predictor Set 1, that is their LC mathe-

matics result, the number of hours spent playing computer games and the

Programming Self-esteem scale. Twenty-one of the 22 students (95%) who com-

pleted the module participated in the study. The study was carried out when the

students had completed three weeks of Java programming (variable types, selection

statements and iteration).

The full set of students who participated in the main study outlined in this paper

with no missing data, (n¼ 102), were used as training instances to develop a final

logistic regression model. The model achieved an overall prediction accuracy of 81%

(4 students were misclassified). The number of students correctly classified as weak

was 80% (2 students misclassified) and the number of students correctly classified as

strong was 82% (2 students misclassified). With regards to the two students who were

predicted to be ‘strong’ programmers but were actually ‘weak’, the first student

achieved an overall result of 54.97% and the cut-off value for weak was 55.5%. That

is, had the student achieved 0.6% more they would have been correctly classified,

increasing the overall accuracy measure to 86% and the sensitivity measure to 90%.

The second student who was misclassified as ‘strong’ did not attend any lab or

workshop sessions and attended less than 5% of the lectures in the second semester.

Prior to their non-attendance the student had performed well in their class and lab

exams.

This study further confirms the effectiveness of a logistic regression model using

the three identified factors for predicting programming performance.
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6.1. Conclusions

The work outlined in this paper makes four main contributions to the field. First,

the research is based on a new study on identifying factors that influence success

on introductory programming modules. Over 25 factors were examined at four

different institutions. The study provided further evidence on the importance of

mathematics, comfort level and game playing as predictors of programming

performance. The study also examined numerous other factors and found that

they failed to contribute further to the prediction model, for example prior

programming experience, number of hours a student spends working at a part-

time job, encouragement from others to study programming, preference to work

alone or in a group when solving problems and number of hours using application

software, emailing or surfing the web before and during the early stages of the

course. Second, the study introduced the use of a new instrument, (the

Programming Self-esteem scale), and found that it outperforms the Cantwell-

Wilson and Shrock (2001) comfort-level questions and the shortened Computer-

programming Self-efficacy scale as a measure for predicting programming

performance. Third, an investigation on the usefulness of SRL for predicting

performance was carried out. While, SRL was not found to contribute further to

the model, except for the self-efficacy measure, its role in learning to program was

identified and justifies further research in the area. Finally, the classification model

outlined in investigation 1 and the subsequent analysis using classification

probability is arguably one of the most successful prediction models to date. The

use of 10-fold stratified cross-validation further confirms the generalizability of the

findings.

Future work should seek to validate the second model. The MSLQ self-efficacy

scale should be administered along side the other measures to see if it is useful when

administered in the very early stages of the module. If it is found to be useful, then

incorporating the measure with the number of hours a student is likely to study, their

LC mathematics score, and the number of hours playing games could result in an

even more effective model.

A future study examining the effectiveness of the three-factor model at predicting

performance in other computer science topics, for example, discrete mathematics

would be useful. The only modification required to the instruments would be to re-

word the programming self-esteem measure to represent the new topic. Where

students study computer science as part of a science or arts degree, it would also be

useful to determine how well the model predicts performance on the associated

science or arts modules.

With regards to the LC mathematics score, studies need to be carried out in

other countries to see if performance on other mathematics tests can be used in

the model instead. The development of a mathematical test that captures the

aspects of mathematics that are most important in learning to program would be

very useful rather than relying on responses on a test that all students may not

have taken.
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