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We have investigated the various approaches taken by first-year university students (n � 550) when

asked to determine the direction of motion, the constancy of speed, and a numerical value of the speed of

an object at a point on a numerical linear distance-time graph. We investigated the prevalence of various

well-known general graphing difficulties, such as graph-as-picture errors and slope-height confusion. We

established that two-thirds of our students could determine the direction of motion with respect to a

reference point, just under 80% could determine that the speed is constant, and just under 20% of our

students could correctly determine the value of the speed; in the latter case, about half of the students

divided the two coordinates. Three stable categories of correctly explaining the constancy of speed

emerged from the data. We found that the reason given for determining that the speed of the object was

constant did not correlate with successfully determining a value for the speed. We have established that

technical difficulties such as determining the slope of any linear graph did not explain the poor

performance. By comparing the answers to similar questions on water level versus time graphs, we

were able to establish that context dependence and incorrect prior learning are likely to play a role. Post-

test data are used to confirm the validity of the categorization and support the conclusion that being able to

determine the slope of a y; x graph and having a correct qualitative understanding of a distance-time graph

is not sufficient to correctly determine a value for the speed.

DOI: 10.1103/PhysRevSTPER.9.010107 PACS numbers: 01.40.Fk

I. INTRODUCTION

In this paper we investigate the approaches taken by
first-year university undergraduate students when asked
questions on numerical distance-time graphs. All graphs
were linear and did not go through the origin. We asked
students to determine in what direction an object was
moving and whether its speed was constant, and to find
a numerical value for the speed at a particular instant.
Thus, we asked the students to engage with a graphical
representation of uniform motion, to differentiate between
distance and speed, to use (implicitly or explicitly) the
idea of a limit, and to use an algorithm for determining
the slope of a graph. We have also investigated whether
there was a context dependence to the approaches our
students took.

In Sec. I A we consider some relevant findings in the
literature regarding difficulties with graphing and graph
interpretation. In Sec. I B we discuss some difficulties
students may have in distinguishing distance and speed
in a classroom setting.

A. Research on graphing

Early research in both science and mathematics
education identified and documented strategies students
use when they are asked to switch between graphs, other
representations, and observable events in general [1,2].
Student difficulties with distance-time graphs, in particu-
lar, have been the subject of a number of investigations
[1–8]; see also the extensive review by McDermott and
Redish [9]. We use the general categorization of student
difficulties with graph interpretation given by Leinhardt
et al. [2] to summarize the many findings. They distinguish
between interval-point confusion, graph-as-picture error,
and slope-height confusion.
(1) An example of interval-point confusion occurs

when one quantity is greater than another over a
certain interval, but students only discuss a single
point on that interval. For example, in the context
of Fig. 1(a), an interval-point confusion would
occur if somebody were asked when the ball is
more than 1 m away and replied with a single instant
(say, t ¼ 4 s) when a fully correct answer would
refer to an interval (typically containing the instant
mentioned; in this case, between 2.6 and 5 s).

(2) Students make a graph-as-picture error, e.g., when
they interpret a distance-time graph as a road map or
a simplified sketch of a journey. In the former case,
they may represent an object first moving to the
right and then moving to the left by a line on a
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distance-time graph that first moves to the right and
then to the left (i.e., with time decreasing); in the
latter case, a distance-time graph may be interpreted
as a graph showing altitude versus horizontal dis-
tance. Thus, a student could interpret Fig. 1(a) as
showing that the ball rolls uphill.

(3) The third category, slope-height confusion, refers to
graphs where students confuse the slope of a graph
with the coordinates [4,7,8]. Thus, students might
interpret Fig. 1(a) as showing that at t ¼ 1 s, the
speed equals 0:2 m=s rather than the distance being
0.2 m; or they might reason that the speed of the ball
is increasing, rather than the distance.

B. Slope-height confusion or speed-distance confusion?

It is often not easy to distinguish between difficulties

with graph interpretation per se, difficulties with rate of

change versus value in general, or difficulties with the

concepts of speed and distance. It may seem so unlikely

that university science students would confuse speed and

distance that one may be tempted to dismiss the possibility

out of hand. We do not think that any of our students have

difficulty distinguishing speed and distance in everyday

life. Quite apart from whatever formal education they have

had, the (unquantified) notions of distance and motion are

interlinked at a very deep level: in the first month of their

A ball moves along a track. The graph at 
right shows the distance from the ball to a 
fixed point during a number of seconds. 

a. Is the ball moving away from, moving
towards, or not moving with respect to 
the fixed point?  Explain. 

b. Is the speed of the ball increasing,
decreasing, or constant?  Explain. 

c. What is the speed of the ball at t = 3.0 
s?  Explain. 

(a)

What is the slope of the line shown at right at the point indicated with the dot?  
Explain briefly, and show your work. 

(b)

The graph at right shows the water level in a 
flat-bottomed swimming pool at different 
times.

a. Is the water flowing into the pool, out of
the pool, or does water not flow at all?  
Explain.

b. Is the water level changing at an 
increasing, decreasing, or constant rate?  
Explain.

c. How quickly does the water level change 
at t = 200 s?  Explain. 

(c)
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FIG. 1 (color online). Typical graphs used to investigate difficulties with determining slope from a linear graph: (a) distance-time
graph; (b) y; x graph; (c) water level versus time graph. On some occasions, the best-fit line was omitted from graphs like (a) and (c).
This made no significant difference to the answers given.

THOMAS WEMYSS AND PAULVAN KAMPEN PHYS. REV. ST PHYS. EDUC. RES. 9, 010107 (2013)

010107-2



lives, humans develop their depth perception largely based
on kinetic cues [10]. By the age of 11, prior to formal
learning, almost all people have developed a cognitive
framework in which distance and speed have a direct
relationship, as do distance and duration, while duration
and speed have an inverse relationship [11]. However, this
is not to say that students can distinguish between the
concepts of speed and distance as defined in the classroom.

We give two examples of how confusion between dis-
tance and speed may occur in the context of formal educa-
tion. First, all of the most popular school science textbooks
that would have been used by our student cohort define
speed inwords as ‘‘the distance travelled by an object in one
unit of time’’ [12]. A literal interpretation of this definition
would lead one to believe that speed is a distance. Second,
students have been taught that the product of two numbers a
and b is to be interpreted as the successive addition of b
terms of a (or vice versa). Seen in this light, it is not
unreasonable to think of the distance traveled, d, as a result
of adding t unit distances v to each other.

Thompson [13] discusses the somewhat analogous
case of a 10-year-old student, whose initial conceptual
understanding may be summarized as follows: speed is
the distance traveled in 1 s, and time is the ratio of distance
and speed. Thus, if an object travels at constant speed v,
then v is the distance traveled in 1 s; the ratio d=v gives
the number of unit distances v required to make up the
total distance d; and this ratio is identified as the time
taken to travel. We do not know how prevalent this kind
of reasoning is, but Thompson certainly presents a
compelling example of how students may be able to
successfully carry out and discuss calculations involving
(constant) speed, distance, and time to considerable depth,
and yet not see speed as very different from distance.

II. THEORETICAL CONSIDERATIONS

On the theoretical side, a number of frameworks have
emerged that aim to interpret the findings described above.
Of late, there has been a shift away frommerely identifying
misconceptions (reasonably stable concepts that form part
of a more or less coherent framework different from that of
experts) to focusing on capabilities [14] and knowledge in
pieces [15]—for example, in the form of phenomenologi-
cal primitives [16] or p-prims (small pieces of knowledge
assembled from experience), facets [17], or affordances,
which may be defined as possible actions that are likely to
be triggered, in particular, settings [18].

All capabilities theories stress the importance of context.
Context generally plays an important role when students
answer questions that require interpretation of graphs. Roth
[19] points out that in order to answer a graphing question,
students need to have both an understanding of the context
and a general ability to interpret graphs. Tests by Åberg-
Bengtsson and Ottosson [20] and the Test of Graphing in
Science [5] aimed at middle school students found a strong

context-dependence of student performance on graph
interpretation questions. Heckler et al. [21] recently found
that students reply differently to similar questions on
height and slope depending on the variables plotted on
otherwise identical graphs.
By contrast, Elby has claimed that ‘‘in a visual

representation, the compelling visual attribute tends to
cue WYSIWYG,’’ where WYSIWYG stands for ‘‘what-
you-see-is-what-you-get’’ and that a straight line graph
cues constancy [22]. This suggests that at least some
elements of productive graph interpretation may not
depend on context after all.

III. NUMERICAL DISTANCE-TIME GRAPHS

In this work, numerical distance-time graphs take center
stage. The research started with asking first-year university
science students to determine the speed at a particular
instant from a linear distance-time graph that does not go
through the origin. An example is given in Fig. 1(a). We
typically asked students three questions, in the same order:
(a) The direction the object is moving in;
(b) Whether the speed is increasing, decreasing, or

constant;
(c) The value of the speed at a particular instant.

Minor variations of the questions exist. In some case, we
labeled the reference point P; sometimes only data points
were given but no line.Most importantly, some of the graphs
have a positive slope, while others have a negative slope.
In principle, these questions may be answered correctly

with only knowledge of the relevant definitions, i.e., with-
out understanding the underlying physics. For example, to
determine the speed from a distance-time graph, students
must be able to calculate a value for the slope. All students
have encountered the concept in mathematics, and most are
familiar with the formula for the slope of a straight line,

slope ¼ y2 � y1
x2 � x1

: (1)

As the slope is constant, the theory of limits allows us to
ascribe this ratio to the slope at any point on the graph [23].
It seems likely that students must be able to use (1)

implicitly or explicitly to extract the speed of an object at
an instant from a distance-time graph. In fact, students who
are able to apply a technique to determine the slope of a
y; x graph only need to substitute the word ‘‘speed’’ for
‘‘slope,’’ and append appropriate units to obtain a correct
numerical answer. A deeper understanding, e.g., recogni-
tion that because the ball travels at constant speed the
instantaneous speed is equal to the average speed during
any interval, is not required to ‘‘get the right answer.’’
Notwithstanding these considerations, we expected con-

text to play an important role in the students’ approaches to
answering questions on distance-time graphs, as prior
learning can be expected to play a role. Many high school
and university students have been found to struggle when
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they are asked to determine the speed from a distance-time
graph, especially when the graph is not a straight line
through the origin. For example, Beichner [24] found
that 73% of 895 students could correctly determine instan-
taneous speed on a linear part of a distance-time graph that
went through the origin (question 5 on his TUG-K test), but
only 21% could do this on a linear part of a distance-time
graph that did not go through the origin (question 17 on the
TUG-K test). In the latter case, almost half the students
calculated speed as the ratio of distance over time.

Likewise, when asked to determine the speed from a
distance-time graph, our students tend to use the formula

v ¼ d

t
; (2)

which they often interpret as

speed equals distance over time ; (3)

rather than

average speed equals change in distance

over change in time; (4)

hence many divide distance by time. Both interpretations
can be found, often side by side, in Irish secondary school
textbooks (almost in the same breath as the definition of
speed as a unit distance). Almost all distance-time graphs
our students have interacted with in school are straight
lines through the origin [25]; thus they may obtain a value
for speed from a distance-time graph without realizing that
there is a difference between interpretations (3) and (4), let
alone that (3) is an incorrect interpretation of Eq. (2).

If Elby’s WYSIWYG notion applies to distance-time
graphs, the compelling visual attribute of a distance-time
graph that does not go through the origin would cue a
productive response (that the speed is constant). However,
paired with our students’ prior experience, it could also cue
an unproductive response (dividing the two coordinates no
longer yields a correct value for the speed).

IV. RESEARCH DESIGN

The research in the literature described above has, in the
main, dealt with qualitative reasoning primarily or exclu-
sively. In this paper, we extend these studies by investigat-
ing students’ qualitative and quantitative reasoning when
interpreting numerical distance-time graphs, and whether
there are correlations between these types of reasoning.

We were interested in learning more about how students
approach the interpretation of these representations and the
nature of the difficulties they encounter. We carried out a
number of empirical investigations and correlated the
results. In addition to the questions on distance-time graphs
given at the start of Sec. III, we checked whether students
were able to determine the slope at a point in a y; x graph, in
an attempt to divorce issues with the physics from technical
issues. An example of such a question is given in Fig. 1(b).

We also sought to investigate whether there is a context
dependence. As stated in Sec. III, our students had encoun-
tered distance-time graphs and problems involving speed,
distance, and time earlier in their education. This may
impact (positively or negatively) on their approach, and
makes it hard to divorce issues with interpreting any straight
line slope (and they will have seen straight line graphs
through the origin in many different contexts) from issues
with the familiar context of distance-time graphs. In an
attempt to separate these issues, we asked near-isomorphic
questions on closely analogous linearwater level versus time
graphs. An example is given in Fig. 1(c). We asked whether
water is entering or leaving a pool, whether thewater level is
changing at an increasing, decreasing, or constant rate, and
how quickly the water level changes at a particular instant.
We identified three research questions:
(1) What difficulties do students encounter when

dealing with a linear distance-time graph, and how
prevalent are these difficulties? Specifically,

� What difficulties do students encounter when identi-
fying the direction of motion from a linear distance-
time graph, and how prevalent are these difficulties?

� What are the various lines of reasoning students use
to assess whether the speed is constant from a linear
distance-time graph, and how prevalent are they?

� What difficulties do students encounter when deter-
mining a value for the speed from a linear distance-
time graph, and how prevalent are they?

� Is the reasoning students use to assess whether the
speed is constant from a linear distance-time graph a
predictor for how they determine the speed?

(2) To what extent is the ability to determine the slope
of a y; x graph and to answer qualitative aspects
of numerical distance-time graphs sufficient to suc-
cessfully determine a value for the speed from a
linear distance-time graph?

(3) Do students experience these difficulties to the same
extent when they are asked questions on analogous
water level versus time graphs?

To answer these research questions, we gave students
written pen-and-paper questions concerning a number of
linear graphs. They were asked to provide explanations
with their answers. Pretests were sometimes administered
online, sometimes on paper in the laboratory at the start of
week 1 or 2 of a 12-week semester; we found no significant
differences in the answers. Post-test results were obtained
in written examinations administered in weeks 6 and 12.
The data were obtained from three to four different

cohorts of 50 to 70 students each in any given year, over
a period of three years. The students were typically aged
18, with a small (< 10%) admixture of mature students.
For an estimated 90% of students, English is the first
(native) language; most of the other students also have a
good to excellent command of English. All students
attended Dublin City University, Ireland, with the intention
to study a natural science or life science other than physics.

THOMAS WEMYSS AND PAULVAN KAMPEN PHYS. REV. ST PHYS. EDUC. RES. 9, 010107 (2013)

010107-4



About 75% of them have not studied physics since they
were 15 years old; about 20% have taken physics at high
school level. The students were offered three lectures a
week in mechanics, including uniform motion, and one
2.5-hour laboratory on a mechanics topic per week. The
laboratories were self-contained and more or less indepen-
dent of the lectures, but the physics topics contained in the
labs would typically have been discussed in lecture before
the pretest was administered.

Each cohort was given two different pretest or post-test
questions. For example, a particular student cohort may
have been given a negatively sloped y; x graph and a
positively distance-time graph in the same pretest. That
same cohort would then have been given a positively
sloped y; x graph and a positively water level versus time
graph in the same post-test.

Individual answers from written questions, discussions
in the laboratory, and semistructured interviews were
analyzed. The data were then made quantitative by catego-
rizing the answers [26]. The categories were not predeter-
mined, but emerged from studying the students’ answers.
Eventuallywe only needed a small number of categories that
proved stable across the different contexts (y; x graphs,
distance-time graphs, water level versus time graphs) for
whichwe asked questions. This categorization allowed us to
describe the many answers collectively. We achieved intra-
rater and interrater reliability of over 90% consistently.

As the prevalence of different lines of reasoning in
different contexts within a large group of students was
the main concern of this study, most information on
students’ reasoning was obtained from their written
explanations to their responses. In the majority of cases,
their explanations were sufficiently clear to allow catego-
rization with a great degree of certainty. Our interpretations
were substantially corroborated in a small number of semi-
structured interviews and many informal discussions with
students within the laboratory. Unless stated otherwise, the
quotes cited and our interpretations thereof are derived
from the written responses.

Though we present both pretest and post-test data, the
focus of this paper is not on the intervention (an inquiry-
based laboratory). The main reason for including both sets
of data is to justify the categories identified, and to give the
reader an appreciation for the stability of both the catego-
ries and the students’ difficulties. In fact, one category
would not have emerged as important from analysis of
the pretest data alone; only the post-test data justified its
existence as a separate category.

V. IDENTIFICATION OF STUDENT DIFFICULTIES
WITH LINEAR DISTANCE-TIME GRAPHS AND

THEIR PREVALENCES

As stated at the start of Sec. III, we investigated the
extent to which students make sense of linear distance
time graphs by asking them to determine the direction,

constancy, and speed of the motion. This naturally leads
us to split the research question into the subquestions listed
above. In this section, we address each of these subques-
tions in turn.

A. A note on statistics

We found no significant differences between cohorts
when the same questions were asked at the same stage
(pre- or postintervention) at the p ¼ 0:01 level, and almost
none at the p ¼ 0:05 level, measured by �2 testing. We
have found that rounding our results to the nearest 5% is a
simple and effective way to reflect the near constancy of
the results between cohorts. For example, if the whole-
group prevalence is 55%, then the prevalence within
almost all of the individual cohorts would be between
50% and 60%.
To safeguard the readability of the paper, we will typi-

cally only discuss prevalences to the nearest 5%. However,
data are quoted to the nearest 1% in the tables. (Taking into
account the high but not perfect interrater reliability, we
feel that the true accuracy is probably closer to the 5% than
the 1% level.) When we say a difference is significant, we
mean at the p ¼ 0:05 level as measured by �2 testing. Only
when necessary do we report on the more detailed statis-
tical analysis we carried out.

B. Determining the direction of motion

The pretest questions on distance-time graphs used a
graph like that of Fig. 1(a); some with positive slope
(n ¼ 356), others with negative slope (n ¼ 194). We
ascertained that students have some difficulties in deter-
mining in which direction the ball moves. Some 20% of
550 students stated that insufficient information was given,
and claimed they needed to knowwhere the reference point
was (or complained that it was not plotted on the graph).
This is another example of a difficulty that is obscured
by asking questions on graphs that go through the origin
only: in that case, the reference point is automatically the
position at t ¼ 0, and there is no need to mention a refer-
ence point.
Second, we found a difference between positively and

negatively sloped graphs. For positively sloped graphs,
20% of students wrote that the ball was moving towards
the reference point, while for negatively sloped graphs only
10% wrote that the ball moved away from it. The incorrect
answers seem to be due to confusion about the reference
point. Discussions and interviews with students helped us
to ascertain that the students typically had no difficulty
with the wording of the question; the difficulty was with
representing the reference point in the graph, which may be
interpreted as a kind of graph-as-picture error. The most
common explanation for choosing the wrong answer was,
for both types of graph, something like
The distance is increasing and if it is moving towards a

point it will get there when at the right distance.
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In other words, P is assumed to be at the end point of the
graph. We also find that many students give explanations
like

We are told that it moved to a fixed point P

or
AsP is a fixed point the ball willmove directly towardsP.

Neither statement is true, and it is interesting to see how
students try and incorporate the unfamiliar mention of a
reference point. More importantly, this kind of answer could
remain hidden in questions on negatively sloped graphs, as
students obtain the correct answer with incorrect reasoning.
In fact, we feel that this explains most of the different
prevalences in assigning a wrong direction to the motion
of the ball for positively and negatively sloped graphs.
Slope-height confusiondoes not appear to be prevalent at all.

In summary, we have found that only two-thirds of
students could determine the direction of motion from
the distance-time graph in the problem presented to
them. Most of the difficulties seem to stem from the
unfamiliar mention of a reference point; even though stu-
dents typically had no problem with the fact that there has
to be a reference point (‘‘zero’’) somewhere, they were
unsure how the graph showed this. Slope-height confusion
did not appear to play a significant role.

C. Determining whether the speed is constant

As Table I shows, 75% of 550 students stated that
the speed of the ball was constant. The graph-as-picture
error rarely seems to occur in this context: we think stu-
dents making this error would answer, e.g., that the speed

increases in the negatively sloped graph (as the ball would
roll down the hill). A detailed study of students’ responses
confirms this impression.
At first glance, it may appear that the 25% who stated

that the speed changed made a height-for-slope error, for
example, by interpreting a decreasing distance as a
decreasing speed. However, this appears to be true only
for two-fifths of this group (10% of the overall population);
and typically, their explanations do not allow us to get an
impression of whether this is a coherent slope-for-height
error or an almost instantaneous minigeneralization [22].
Three-fifths (15% of the overall population) calculated the
speed at two or more instants using the incorrect interpre-
tation (3) consistently, and based their answers on these
calculations.
The 75% of answers stating that the speed of the ball is

constant divides into four categories, one of which we
divide into two subcategories. The first category (35% of
423 students) used reasoning based on intervals as
exemplified below. The category can be divided into two
subcategories. The first subcategory (68 students) use
qualitative or semiqualitative reasoning only, e.g.,

The ball moves the same distance in the same time each
time

or
At each time interval the distance has increased by 3 m.

Sometimes, the reasoning does not provide evidence for
thinking in terms of covariation, but still involves an
interval:
Distance increases by 2 m.

TABLE I. Pretest results for the question of whether the speed of the ball is increasing, decreasing, or constant. Correct answers
(constant speed) are categorized by reason (straight line or constant slope or interval reasoning, both or other). The first numerical
column gives percentages of the 356 students who took a pretest involving a graph with positive slope; likewise the second numerical
column for negatively sloped graphs, and the third column for all students combined. The fourth numerical column shows percentages
only for students who took the y; x graph pretest as well as the distance-time graphs and answered it correctly. The fifth column shows
percentages only for students who also correctly determined the direction of motion. Note that in many, but not all sets of questions,
students were also asked to state whether the speed was increasing or decreasing. This information is given in the bottom part of the
table. In all tables, correct answers are printed in bold.

Positive slope Negative slope All Context-free All prep

Pretest

(n ¼ 356)
Pretest

(n ¼ 194)
Pretest

(n ¼ 550)
Correct

(n ¼ 175)
Correct

(n ¼ 123)

Constant speed (total) 79% ð282Þ 73% ð141Þ 77% ð423Þ 78% ð137Þ 83% ð102Þ
Straight line or constant slope 39% ð138Þ 39% ð75Þ 39% ð213Þ 39% ð68Þ 43% ð53Þ
Interval reasoning 28% ð98Þ 21% ð41Þ 27% ð147Þ 30% ð52Þ 29% ð36Þ
Slope and interval 2% ð6Þ 1% ð2Þ 1% ð8Þ 1% ð1Þ 1% ð1Þ
Other (e.g., proportional reasoning) 11% ð40Þ 12% ð23Þ 11% ð63Þ 9% ð16Þ 10% ð12Þ

(n ¼ 198) (n ¼ 194) (n ¼ 392)

Speed increases 10% (16) � 0% (3)

Speed decreases 10% (23) 25% (49)

Do not know or no answer � 0% (5) � 0% (1) � 0% (6)
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The other subcategory, consisting of 79 students, explicitly
and correctly at least indicated all numerical values
required to calculate the slope (and hence the speed), e.g.,

Traveling the same amount of distance at the same
amount of time, i.e., 3 m every 5 s

or gave the result of the calculation:

The ball moves at 0:6 m=s the whole time.

The subdivision seemed useful, as we expected students
who gave correct numerical values to be less likely to
obtain an incorrect value for the speed at a given instant.

The second and largest category (50%) stated that
the slope is constant, or that the line is straight, e.g.,

The slope of the line does not change

or

The graph is straight, therefore speed is constant.

The third category comprises students who responded
in terms of both intervals and slope. For pretest questions,
this category is almost unpopulated, but in post-tests
they make up some 10% of the answers; for the sake of
consistency, we have included this category in the pretest
analysis also.

The fourth category contains all other answers. These
include students who stated they used proportional reason-
ing and those who gave an unclear or no explanation.

In summary, three-quarters of our students are able to
determine correctly that a linear distance-time graph
represents motion at constant speed, be it by interval
reasoning, considering the shape of the graph, or by
some other means. Taking the ratio of the coordinates at
two different points on the graph, and observing that
these values are different, is the most common reason for
obtaining an incorrect answer. This indicates that incorrect
prior learning is likely to have played a role.

D. Determining the value of the speed

Just under 20% of all students were able to correctly
determine a correct value for the speed from the distance-
time graph; just over 20% of students who determined that
the speed of the ball is constant could. These figures were
obtained after purely calculational errors, read-off errors,
and sign errors are excused. The most prevalent answer,
given by just over half of the students, was obtained by
calculating the speed using interpretation (3). All of these
numbers closely match the findings of Beichner’s study of
U.S. students [24]. Unlike the context-free case, none of
these students appear to have used the origin erroneously
as one of the two points in an otherwise correct calculation.
Just over 15% of the students gave the value for the

distance they read off the graph (sometimes in units of m,
sometimes inm=s). This appears to be an example of some
students getting confused between distance and speed in
an educational context. Typically, such answers are not
explained, other than by a description of how the value
was read off the graph. However, when we probed further,
these students did not reveal an inability to distinguish
between height and slope. Rather, they did not know how
to obtain a value for the speed, and simply gave the best
(or only) answer they could think of. New issues regarding
speed came to light. Some volunteered that they did not
understand the question, as they did not think there is such
a thing as speed at an instant; they appeared to struggle
with Zeno’s arrow paradox. It is interesting to note that
these students did not give zero speed as an answer, as
might be expected. We will not delve deeper into this
interesting find in this paper, but intend to investigate this
further in the future.

E. Reasons for constancy of speed as a predictor

We have correlated the answers to the questions on con-
stancy and numerical value of the speed and present a
summary in Table II. Prior to further analysis of the students’
answers, we would have deemed interval reasoning a more
satisfactory explanation, because this explicitly reveals a

TABLE II. Pretest results linking the reasons students gave for correctly identifying constant speed with how they determined a
value for the rate of change at one particular instant. For example, the fourth column shows that of the 147 students (i.e., 35% of all
students who identified that the speed was constant) who used interval reasoning to determine that the speed changes at constant rate in
the pretest, 21% correctly determined the rate of change using a correct method, 52% divided the two coordinates, 20% read off the
value, and 10% gave uncategorized answers or no answers.

Interval reasoning only

Approaches to correctly

identifying constant speed Qualitative Quantitative All Slope only Slopeþ interval Other Total

Approaches to finding

instantaneous speed

n ¼ 68
(16%)

n ¼ 79
(19%)

n ¼ 147
(35%)

n ¼ 213
(50%)

n ¼ 8
(2%)

n ¼ 55
(15%)

n ¼ 423
(100%)

�y=�x or similar 9% ð6Þ 32% ð25Þ 21% ð31Þ 21% ð45Þ 38% ð3Þ 15% ð8Þ 21% ð87Þ
y=x or similar 53% (36) 51% (40) 52% (76) 58% (124) 50% (4) 36% (20) 53% (224)

Read off 24% (16) 13% (10) 20% (26) 14% (29) 0% (0) 31% (17) 17% (72)

Other or no answer 15% (10) 5% (4) 10% (14) 7% (15) 13% (1) 18% (10) 9% (40)
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correct reasoning process, while students in the other cate-
gories may have relied on identifying a surface feature or
may have been uncertain of their answer. To our surprise, we
found that the method by which students find a numerical
value for the speed at an instant is independent of the
reasoning by which they determined that the speed was
constant. (By contrast, less than 2% of students who said
the speed was not constant determined the speed correctly.)

Incredibly, 50% of the students who gave a numerical
interval-based explanation for the constancy of the speed
calculated the speed at an instant using (3). These are not
just the students who gave the correct magnitude of
individual distance and time intervals: some students
write in the first question that the speed is 0:6 m=s
throughout, and in the second that it is 0:8 m=s at a
particular instant. When probed, many of them justify
the difference by labeling the former ‘‘average speed’’
and the latter ‘‘instantaneous speed’’, but (thankfully)
often lack conviction in doing so. While one should
always be careful not to overinterpret an incorrect answer,
the conclusion seems inescapable that for these students
at least there is nothing wrong with their distance-time
graph interpretation; but they allow prior learning of the
wrong definition of (average) speed to override their
correct graphical interpretation.

VI. IS QUALITATIVE UNDERSTANDING AND
TECHNICAL ABILITY ENOUGH?

To gain deeper insight into the findings of the previous
section, we investigated whether students had difficulty
determining the slope of any graph, to decouple any issues
with the physics frommathematical or technical issues. We
also investigated whether students who were able to suc-
cessfully determine the slope of a y; x graph at a point and
able to determine the direction and constancy of the speed
from the graph did significantly better in determining a
value for the speed.

A. Context-free graphs

We asked students to calculate the slope of a line at a
particular point in graphs like those of Fig. 1(b). The
results of our analysis are given in Table III. We find
no significant difference between graphs with positive
(n ¼ 206) and negative (n ¼ 205) slopes.
Just under 50% of 411 students correctly calculated the

slope. About 40% of those answers (hence 20% of all
students) mentioned both a formula and taking two points:

The slope is the same at all points. To measure the slope
we take 2 points on the line and apply the formula
m ¼ ðy2� y1Þ=ðx2� x1Þ. Using two points (2,3) and
(3,6) we determine m ¼ 3

using the point (1,3) and (0,5) I was able to work out the
slope.

Using slope formula taking 2 points on the line I could
work out the slope and it is negative as it is going down

A further 30% of the correct answers just stated the
formula or that they used one:

Used the slope formula to determine the slope,

Riseðy2-y1Þ=runðx2-x1Þ.
Only 10% of those answers, or 5% of the total, used
interval reasoning:

The slope of a line is constant and in this case it is simply
�2. With every 1 unit increment on the x axis there is
2 units decline on the y axis.

The first quote explicitly states the idea that the slope is the
same at all points. Only 9 students out of 411 did so.
The incorrect answers can be split into three categories.

Just over 20% calculate y=x. One-quarter of these students
used the correct equation (1), but either took (1,3) and (0,0)

TABLE III. Pretest results for the task to determine the slope at a point on a straight line
y; x graph not through the origin. The row labeled y=x includes answers in which students stated
they calculated �y=�x, but used (0,0) as one of the points or (1,0) and (0,3) as the two points.
The row labeled ‘‘interval reasoning’’ excludes students who used �y=�x.

Positive slope Negative slope All

Method of

calculating slope

Pretest

(n ¼ 206)
Pretest

(n ¼ 205)
Pretest

(n ¼ 411)

�y=�x 52% ð107Þ 46% ð94Þ 49% ð201Þ
Formula and 2 points 19% ð39Þ 20% ð41Þ 19% ð80Þ
Formula 14% ð29Þ 15% ð30Þ 14% ð59Þ
Interval reasoning 4% ð9Þ 4% ð9Þ 4% ð18Þ

y=x 18% (37) 24% (50) 21% (87)

Read off 3% (7) 4% (8) 4% (15)

Other 15% (30) 11% (22) 13% (52)

No answer 12% (25) 15% (31) 14% (56)
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or (1,0) and (0,3) as the two points. Another quarter of
these students explicitly stated that slope equals y=x.

Just under 5% of students gave both coordinates of the
point as their answer, typically written as ‘‘(1,3)’’ or ‘‘1,3’’;
two students wrote down the y coordinate only. Just under
15% did not give a value. In the written answers, 10% gave
no explanation or said that they do not know how to do this.
Informal discussions in the laboratory suggest that about
half of these students had forgotten how to calculate the
slope of a line, while the other half could, but did not know
how to find the value for the slope at a point. This does not
appear to be a Zeno’s arrow paradox problem, but simply a
matter of never having been asked to think of the slope at a
point on a straight line.

Thus, a maximum of 10% of answers could be said to
indicate possible slope-height confusion if we are willing
to consider all of the students who did not know that a
straight line has a slope at a point and all of the students
who gave one or both coordinates as showing slope-height
confusion. From this we may conclude that this is not a
common difficulty for our student cohorts.

The results on y; x graphs strongly suggest that many
students had difficulty in determining the slope of a line.
Most responses, whether correct or incorrect, appeared to
rely on the use of a formula; only some 5% of answers
comprised interval reasoning. A negligible number of stu-
dents explicitly stated that the slope of a straight line is
equal to the slope at a point.

B. Context-free graphs as a predictor

A total of 351 students participated in both of the pretest
questions on y; x graphs and distance-time graphs. This
allows us to have a detailed look at any correlations
between the answers. Of these 351 students, 175 students
answered the y; x-graph question correctly. Within this
subgroup, we also looked at the 102 students who also
answered the questions on the direction and constancy of
the motion correctly.

The fourth and fifth columns of Table I show that there
was no difference between these subgroups of students and
the entire group when it comes to determining whether the

speed of the ball is constant or not; neither in the number of
correct determinations nor in the reasoning used. It is
therefore reasonable to conclude that the reasoning used
by students to determine whether the speed of an object is
constant from a distance-time graph is independent of their
ability to determine the value of a slope correctly.
One-quarter of the 175 students who correctly deter-

mined the slope at a point in a y; x graph successfully
determined a value for speed. As shown in Table IV, even
within the subgroup of 102 students who also answered the
questions on the direction and constancy of the motion
correctly, only 35% gave a correct numerical value.
These findings strongly suggest that merely focusing on

preparing the students optimally, in terms of them being
able to calculate the slope of a graph and being able to
interpret the qualitative aspects of a numerical distance-
time graph, will not suffice to achieve more than one-third
of our students to correctly determine the speed from a
linear distance-time graph.

VII. WATER LEVELVERSUS TIME GRAPHS

Having concluded that possible technical issues
alone cannot explain the low fraction of students who
can correctly determine a value for the speed from a
linear distance-time graph, we also investigated a closely
analogous question on water level versus time graphs.
If Elby’s WYSIWYG idea is dominant, then students
should answer the water level questions more or less the
same as the distance-time questions; if not, then context
dependence is more important.
The categorization found for distance-time graphs

proved useful in this case again. A typical example of a
student using interval reasoning was

Thewater level changes at a constant rate as the intervals
are the same.

Answers based on the shape of the graph use reasoning like

The water level is changing at a constant rate as it is a
straight line graph which shows this.

TABLE IV. Pretest results linking the reasons students gave for correctly identifying constant speed with how they determined a
value for the rate of change at one particular instant. Shown here are results only for the students who answer the questions on
y; x graph, direction and constancy of motion correctly. For an example of how to read the table, see the caption of Table II.

Interval reasoning only

Approaches to correctly

identifying constant speed

Qualitative Quantitative All Slope only Slopeþ interval Other Total

Approaches to finding

instantaneous speed

n ¼ 16
(16%)

n ¼ 20
(20%)

n ¼ 36
(35%)

n ¼ 53
(52%)

n ¼ 1
(1%)

n ¼ 12
(12%)

n ¼ 102
(100%)

�y=�x or similar 13% ð2Þ 50% ð10Þ 33% ð12Þ 38% ð20Þ 0% ð0Þ 33% ð4Þ 35% ð36Þ
y=x or similar 57% (9) 35% (7) 44% (16) 45% (24) 100% (1) 50% (6) 46% (47)

Read off 19% (3) 5% (1) 11% (4) 6% (3) 0% (0) 17% (2) 9% (9)

Other or no answer 13% (2) 10% (2) 11% (4) 11% (6) 0% (0) 0% (0) 10% (10)
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Finally, we give a typical example of an answer showing
both slope and interval reasoning, and yet an incorrect
determination of the rate of change:

The water level is changing at a constant rate. For
every 100 s the water level decreases by 40 m. This
situation leads to a straight line graph when it is graphed.
Both the straight line graph and the same decrease in
water level per 100 s indicate a constant rate of change
of water level of pool.

S ¼ speed. D ¼ distance=displacement.
T ¼ time.
S ¼ D=T ¼ 160

200 ¼ speed of 0:8 cm=s.

The pretest questions on water level versus time graphs
used a graph like that of Fig. 1(c). The first question took
the form of asking students whether water was flowing into
the pool, out of the pool, or not flowing at all. Over 95% of
answers were correct, for both positively and negatively
sloped graphs. Although the context or the phrasing of the
question here is evidently sufficiently different from
the distance-time graphs to trigger a different response,
the answers were consistent with our earlier interpretation
that the incorrect answers to the corresponding question in
distance-time graphs were not due to slope-height confu-
sion. The data were also consistent with our finding that
difficulties with interpreting the reference point were an
obstacle for students when interpreting distance-time
graphs; in this case, the bottom of the pool is the (implicit)
known reference point.

As with distance-time graphs, we found no significant
difference between graphs with positive or negative slopes;
but in this case, over 95% of students stated that the filling
rate was constant, as shown in Table V. These numbers
were significantly different from those obtained for the
distance-time graphs; in fact, many more students
answered correctly in this context, which they had not
encountered before in a formal setting. This is a further
indication that context is an important factor, given the
close relation between the water level versus time graph
and the distance-time graph. Indeed, many students

spontaneously used the word speed when describing the
pool filling or emptying; and yet, this question did not
appear to trigger students taking two points from the graph
to work out the speed at two points.
The close similarity between the water level versus time

and distance-time graphs allows us to verify Elby’s sug-
gestion [22] that the dominant feature of the graph is very
influential on students’ answers. The different prevalences
in the two contexts provided an empirical indication that
the dominant feature of the graph may have triggered
initial student responses, but it was not what determined
the final response. Furthermore, we have asked the ques-
tions with and without a line through the data points; no
differences in prevalences were observed, even though the
‘‘visual dominance’’ of the constancy of the slope would
change between the two situations. We therefore conclude
that a constancy cue provided by a straight line does not
explain our students’ answers.
A correlation between the reasoning used to conclude

the filling rate is constant and the reasoning used to
find how quickly the pool fills at a given instant is given
in Table VI. Two important findings emerge:

� Just over 40% of students correctly calculated the
rate of change of the water level, compared to 20%
who correctly calculated the speed from distance-
time graphs. The numerical answers were indepen-
dent of the method used to determine that the filling
rate is constant.

� A far greater fraction of students now applied
interval reasoning (60% versus 35%), even though
this pretest question was asked at the same stage
in the course as the distance-time graph pretest
question. As we deem an explanation based on the
straightness of the line more likely to be a pat
answer than an explanation based on interval rea-
soning, we infer from this that our students engaged
with the water level versus time graph more than
with the distance-time graph.

It is worth commenting on the different categorization
of incorrect answers, which we ascribe to the way the

TABLE V. Pretest results for the question whether the water level is changing at an increasing, decreasing, or constant rate. No
significant difference was found between positively and negatively sloped lines.

Positive slope Negative slope All

Pretest (n ¼ 179) Pretest (n ¼ 164) Pretest (n ¼ 343)

Constant rate (total) 96% ð172Þ 99% ð162Þ 97% ð334Þ
Straight line or constant slope 36% ð65Þ 45% ð73Þ 40% ð138Þ
Interval reasoning 49% ð87Þ 45% ð73Þ 47% ð160Þ
Slope and interval 3% ð6Þ 1% ð1Þ 2% ð7Þ
Other (e.g., proportional reasoning) 8% ð14Þ 7% ð11Þ 7% ð25Þ

Rate increases 0% (0) 0% (0)

Rate decreases 0% (0) 0% (0)

Do not know or no answer 4% (7) 4% (6) 4% (13)
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question was asked. Unlike distance-time graph questions,
we asked students first what the water level was at a
particular instant, before asking about the rate of change
at the same instant. In the light of the discussion above, one
would now expect that students who read off the value
from distance-time graphs would be confused; this is how
we explain the absence of the ‘‘read-off’’ category and the
significant increase in the number of no answers.

VIII. SUMMARY OF PRETEST RESULTS

The pretest results allow us to give a provisional answer
to the research questions asked.

(1) Difficulties with linear distance-time graphs may be
summarized as follows:

� About 20% of our students claim they need to know
the position of the reference point to determine the
direction of motion; they do not seem to realize that
the reference point is at d ¼ 0 by definition. This may
be interpreted as a graph-as-picture error, in that these
students expect the graph to give an iconic represen-
tation of the reference point. Another 10% to 20%
took the reference point to be the end point of the
graph. Sixty to 70% of students correctly identified
the direction of the motion. Slope-height confusion
did not seem to play a significant role.

� 75% of our students correctly assess that the speed is
constant in a linear distance-time graph; 25% use
interval reasoning, 40% slope reasoning, 10% other
reasoning. The 25% of incorrect answers are split into
two categories: those who divide two coordinates and
different points (15%) and those who misidentify an
increasing (decreasing) distance with an increasing
(decreasing) speed (10%).

� Only 20% of our students correctly determine a value
for the speed from a linear distance-time graph. 50%
divide the coordinates, and 15% quote the distance
value.

� The approach our students take to determine the value
for the speed from a linear distance-time graph is
independent from the reasoning they use to assess
whether the speed is constant.

(2) The ability to determine the slope of a y; x graph and
to answer qualitative aspects of numerical distance-
time graphs is not sufficient to successfully deter-
mine a value for the speed froma linear distance-time
graph, as only 35% of students who both correctly
determine the slope at a point on a linear y; x graph,
the direction of motion and the constancy of speed on
a linear distance-time graph correctly determine the
speed.We conclude that merelymaking sure students
can do all the reasoning and acquire all relevant
techniques is insufficient to get a satisfactory fraction
of students to determine the speed correctly.

(3) When comparing the answers from the water level
versus time graphs with those for distance-time graphs,
it emerges that students are more likely to answer the
questions correctly for water level versus time graphs,
and that they are more likely to use interval reasoning
in the water level versus time setting, both when
determining whether the rate of change is constant
and in determining a numerical value for the slope.

Even though the questions are not exactly isomorphic,
we feel that they are sufficiently similar that the results can
be compared. It is striking that students consistently do
better in the setting that they have not encountered in an
educational context before. To us these findings strongly
suggest that prior learning has impacted negatively on how
students approach distance-time graphs. As students have
no memory of water level versus time graphs, they must
engage with the problem to some extent to obtain an
answer, while distance-time graphs may trigger a rote
procedure (typically, one that yields the correct answer
for graphs through the origin only).
We have interviewed 15 students with a view to gaining

more insight into these differences, but with little result.
Students were generally able to explain the procedure they
followed, but struggled to explain why they followed the
procedure they chose. One tentative conclusion is that
students did not think very much about choosing a proce-
dure; it seemed to be more a reflex than a well-considered
choice [27]. Students did not spontaneously see an incon-
sistency if they chose a correct procedure for y; x graphs
but not for distance-time graphs or for water level versus

TABLE VI. Pretest results linking the reasons students gave for correctly identifying constant rate with how they determined a value
for the rate of change at one particular instant. For an example of how to read the table, see the caption of Table II.

Interval reasoning only

Approaches to correctly identifying

constant rate of change

Qualitative Quantitative All Slope only Slopeþ interval Other Total

Approaches to finding

instantaneous rate of change

n ¼ 91
(33%)

n ¼ 62
(22%)

n ¼ 153
(55%)

n ¼ 89
(32%)

n ¼ 7
(3%)

n ¼ 30
(11%)

n ¼ 279
(100%)

�y=�x or similar 44% ð40Þ 37% ð23Þ 41% ð63Þ 46% ð41Þ 43% ð3Þ 37% ð11Þ 42% ð118Þ
y=x or similar 15% (14) 18% (11) 16% (25) 12% (11) 0% (0) 7% (2) 14% (38)

Other 32% (29) 18% (11) 26% (40) 22% (20) 0% (0) 33% (10) 25% (70)

No answer 9% (8) 27% (17) 16% (25) 19% (17) 57% (4) 23% (7) 19% (53)
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time graphs; it appears that the two questions cued differ-
ent responses.

IX. INSIGHTS FROM POST-TEST ANALYSIS

We extended the study by asking the same cohorts of
students similar but different questions on a post-test fol-
lowing an intervention that focused on interval reasoning.
For example, a particular student cohort might have been
given a negatively sloped y; x graph and a positively sloped
water level versus time graph in the pretest, followed by a
positively sloped y; x graph and a negative sloped distance-
time graph in the post-test.

As stated before, the aim of this section is not to show
the merit of the intervention, but to verify the validity of the
pretest analysis. As it turns out, the post-test results were
sufficiently different that they provided a rich source of
complementary data.

A. Intervention: A uniform motion laboratory

We have developed three laboratories, each of 2.5 hours,
where students are led to focus on interval reasoning. All
three use a guided inquiry method. The last two concern
the motion of a pendulum and nonuniformmotion of a ball,
and they are not discussed in detail here. We mention them
because they are likely to contribute to students getting
used to graph interpretation through interval reasoning.

In the first of these labs, the uniform motion laboratory,
we ask the students to carry out three investigations and
two tutorial-type questions that allow them to become
familiar with and understand a simple approach to break-
ing down the motion of an object into relevant intervals.

We considered adopting a high-tech design (using, e.g.,
motion sensors and graphing calculators), but eventually
opted to design and implement a low-tech approach:
tracks, marbles, and stopwatches. Arguments for and
against use of technology are well known [6,8,28–32].
Part of the reason for our choice was financial: we need
to cater for 36 pairs of students at a time, so the cost factor
is significant. A second factor was the uniform motion
laboratory is part of a set of 18 laboratories that are all
based around the philosophy that introductory level labo-
ratories should not have black boxes. A final argument was
the fact that we feel that students should construct some
graphs by hand while being asked about them.

The first experimental task uses the same setup as the
opening experiment of the kinematics curriculum in
Physics by Inquiry [33]. Students obtain uniform motion

by measuring the time it takes to traverse the first and
second halves of a track whose tilt they adjust, as shown
in Fig. 2. Students then use essentially the same setup but
nowdivide the track into four equal parts, as shown in Fig. 3.
The students are instructed to use two separate variables

to record the position of the ball: xi for the distance of cube
i from the bottom of the ramp, and di for the distance of
cube i from the end of the track. In the experiment, students
record the time it takes for the ball to reach each cube, as
measured from the time the ball reaches the bottom of the
ramp. The students tabulate their data and draw two
distance-time graphs, one for x versus t and one for d
versus t. They are then asked to pick two points, A and
B, on each graph, and are given a hypothetical student
conversation based on real conversations. The conversation
gives two written descriptions of approaches to measure
speed: by dividing distance by time, or change in distance
by change in time. The students are then explicitly asked to
write out each calculation using some or all of the variables
xA, xB, tA, and tB, and then using some or all of the
variables dA, dB, tA, and tB. Through Socratic dialogue,
the students see that calculating distance over time gives
different values for the speed at different times, whereas
change in distance over change in time gives a constant

equal distances

track

ramp
cube

edge of ramp

FIG. 2 (color online). Initial setup used in the uniform motion
laboratory.

x1

d1

FIG. 3 (color online). The track is divided into four equal
lengths. The motion of the ball is considered from the instant
the ball reaches the bottom of the ramp. Distances are measured
from each cube i both to the end of the track (di) and to the
bottom of the ramp (xi).
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FIG. 4. Four graphs representing uniform motion.

THOMAS WEMYSS AND PAULVAN KAMPEN PHYS. REV. ST PHYS. EDUC. RES. 9, 010107 (2013)

010107-12



value. Although many students strongly hold on to the
belief that ‘‘speed is distance over time,’’ because ‘‘that
is the correct formula,’’ most now articulate that dividing
the change in distance by the change in time must be a
correct method.

We have found it useful to insert two tutorial-type
exercises at this point. First, students have to discuss which
of the graphs of Fig. 4 represent uniform motion, and they
are to determine the speed of a negatively sloped distance-
time graph, aided by a hypothetical student conversation.
In the third and final investigation, students further
strengthen their graph reading skills by recreating the

motion of two balls given in the graph of Fig. 5. They are
guided to finding the right setup by being asked whether
the balls travel at constant speed, at the same speeds, start
at the same time; which one finishes first, and whether the
balls overtake each other.

B. Distance-time graphs

Although the prevalences of students’ difficulties
changed, the same categorization applies. Problems with
determining the direction of the motion have virtually
disappeared, as over 95% of students now correctly deter-
mined the direction of motion for positively and negatively
sloped graphs. Comparing the pretest results from Tables I
and II and the post-test results from Tables VII and VIII,
we see that while the fraction of respondents stating that
the speed is constant remained at 75%, there had been a
significant shift in the reasoning used. In the pretest, 35%
of students who said the speed was constant used interval
reasoning, but in the post-test 70% did.
Half of the pretest answers referred only to the shape of

the line when determining whether the speed was constant,
which drops to 30% in the post-test. It was encouraging
that more students after instruction used interval reasoning
not only to analyze the type of motion but also to quantify
the speed of motion.
Despite this improvement in qualitative reasoning,

only 35% of all students calculated a correct value of the

Distance-time graph for two balls on a track
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FIG. 5 (color online). Distance-time graph for two balls rolling
along two parallel tracks.

TABLE VII. Post-test results for the question whether the speed of the ball is increasing, decreasing, or constant.

Positive slope Negative slope All

Post-test (n ¼ 112) Post-test (n ¼ 59) Post-test (n ¼ 171)

Constant speed (total) 72% ð81Þ 91% ð53Þ 82% ð134Þ
Straight line or constant slope 22% ð25Þ 28% ð16Þ 25% ð41Þ
Interval reasoning 39% ð44Þ 50% ð29Þ 45% ð73Þ
Slope and interval 9% ð10Þ 7% ð4Þ 9% ð14Þ
Other (e.g., proportional reasoning) 2% ð2Þ 5% ð3Þ 3% ð5Þ

Speed increases 25% (29) � 0% (1)

Speed decreases � 0% (2) 10% (5)

Do not know or no answer 0% (0) 0% (0) 0% (0)

TABLE VIII. Post-test results linking the reasons students gave for correctly identifying constant speed with how they determined a
value for the rate of change at one particular instant. For an example of how to read the table, see the caption of Table II.

Interval reasoning only

Approaches to correctly

identifying constant speed

Qualitative Quantitative All Slope only Slopeþ interval Other Total

Approaches to finding

instantaneous speed

n ¼ 20
(15%)

n ¼ 51
(38%)

n ¼ 71
(53%)

n ¼ 39
(29%)

n ¼ 14
(10%)

n ¼ 10
(7%)

n ¼ 134
(100%)

�y=�x or similar 15% ð3Þ 55% ð28Þ 44% ð31Þ 38% ð15Þ 43% ð6Þ 40% ð4Þ 42% ð56Þ
y=x or similar 80% (16) 41% (21) 52% (37) 56% (22) 57% (8) 40% (4) 53% (71)

Read off 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0)

Other or no answer 5% (1) 4% (2) 5% (3) 5% (2) 0% (0) 20% (2) 5% (7)
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slope, compared to 15% in the pretest. If we apply the
formula Hake showed to be valid for the Force Concept
Inventory [34],

h ¼ post-test score� pretest score

maximum score� pretest score
; (5)

we obtain a modest gain of h ¼ 0:21. And even this modest
improvement may paint too optimistic a picture: in an
interview conducted after completion of the lab and
post-test, one student stated she used the correct formula

Because using two points is more accurate than using
one.

As before, students who reasoned based on the shape of the
graph were as likely to get the correct numerical value of
the slope as those who use interval reasoning.

C. Technical aspects

Post-test results for questions similar to that of Fig. 1(b)
show two important pieces of information. First, there was
a significant difference between positively and negatively
sloped graphs. Second, in both cases there was a higher
fraction of correct answers, up to over 85% and 70%,
respectively, with high gains of h ¼ 0:69 and h ¼ 0:49,

respectively. Fewer than 10% of students now calculated
the slope as y=x. These results suggest that our teaching of
interval reasoning has been successful.
Together with the post-test results for distance-time

graphs, these results strongly support the conclusions
concerning research question 2 given in Sec. VIII. Even
when almost all of our students were able to correctly
determine the slope of a y; x graph and infer the direction
of motion from a distance-time graph, this resulted in
only a modest improvement in determining a value for
the speed.

D. Water level versus time graphs

The post-test question on water level versus time graphs
used graphs like that of Fig. 1(c). A comparison of
Tables V and VI with Tables IX and X shows that 95%
of students still stated that the filling rate was constant. Of
these students, the fraction whose reasoning was based on
the shape of the graph was down from 40% to 30%, and
reasoning based on intervals was up from a total of 50% to
a total of 70%, with a gain of h ¼ 0:45. The fraction of
students who obtained a correct value for the rate at which
the water level changes remained static at 40%. The results
mirrored those of the distance-time graph post-test ques-
tions quite closely.

TABLE IX. Post-test results for the question whether the water level is changing at an increasing, decreasing, or constant rate. No
significant difference was found between positively and negatively sloped lines.

Positive slope Negative slope All

Post-test (n ¼ 112) Post-test (n ¼ 48) Post-test (n ¼ 160)

Constant rate (total) 95% ð106Þ 92% ð44Þ 94% ð150Þ
Straight line or constant slope 27% ð30Þ 17% ð8Þ 24% ð38Þ
Interval reasoning 60% ð67Þ 48% ð23Þ 56% ð90Þ
Slope and interval 5% ð6Þ 23% ð11Þ 11% ð17Þ
Other (e.g., proportional reasoning) 3% ð3Þ 4% ð2Þ 3% ð5Þ

Rate increases 5% (6) 0% (0)

Rate decreases 0% (0) 8% (4)

Do not know or no answer 0% (0) 0% (0) 0% (0)

TABLE X. Post-test results linking the reasons students gave for correctly identifying constant rate with how they determined a value
for the rate of change at one particular instant. For an example of how to read the table, see the caption of Table II.

Interval reasoning only

Approaches to correctly identifying

constant rate of change

Qualitative Quantitative All Slope only Slopeþ interval Other Total

Approaches to finding

instantaneous rate of change

n ¼ 17
(11%)

n ¼ 73
(49%)

n ¼ 90
(60%)

n ¼ 38
(25%)

n ¼ 17
(11%)

n ¼ 5
(3%)

n ¼ 150
(100%)

�y=�x or similar 53% ð9Þ 36% ð26Þ 39% ð35Þ 37% ð14Þ 47% ð8Þ 40% ð2Þ 39% ð59Þ
y=x or similar 35% (6) 53% (39) 50% (45) 50% (19) 41% (7) 40% (2) 49% (73)

Other 6% (1) 8% (6) 8% (7) 13% (5) 0% (0) 0% (0) 8% (12)

No answer 6% (1) 3% (2) 3% (3) 0% (0) 12% (2) 20% (1) 4% (6)
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E. Conclusions from post-test analysis

The post-test data allow us to further comment on the
research questions.

(1) Difficulties with the direction of motion appear to
have disappeared, after a single laboratory-based
intervention. The coding categories that emerged
from the pretest data still apply. While 20% of
students still struggled with identifying the con-
stancy of speed from a linear distance-time graph,
a greater fraction had started to think about it in
what we regard a more sophisticated manner,
employing interval reasoning. Even so, less than
half of our students could successfully determine
the speed; this success rate remained independent of
the reasoning employed to determine the constancy
of the speed.

(2) The greatest improvement was made in the con-
text-free setting, where many more students obtain
the correct value for the slope using a correct
procedure after instruction. As practically all
students could now determine the slope at a point
on a y; x graph, it was confirmed that this ability
and being able to answer qualitative aspects of
numerical distance-time graphs was insufficient to
successfully determine a value for the speed from a
linear distance-time graph.

(3) Differences between the prevalences of approaches
to answering water level versus time graphs and
distance-time graphs became smaller after the inter-
vention. The fraction of correct answers obtained,
and gains on the type of reasoning used, are similar
for the distance-time and water level versus time
questions in the post-test. This suggests that the
questions were becoming equivalent to a greater
fraction of the students (as they would be to
experts). However, the overall success rate was at
the 40% level only, the same as the pretest rate for
water level versus time graphs.

X. CONCLUSION

We have investigated the difficulties first-year university
students (n � 550) encountered when determining a value
for speed from linear distance-time graphs, aided by stud-
ies on analogous water level versus time and context-free
graphs. The quantitative nature of the questions has
allowed us to uncover issues with distance-time graphs
that have, to the best of our knowledge, not been reported
previously. When answering conceptually equivalent ques-
tions in different contexts, students deploy different prob-
lem solving strategies. To many students, context seems to
be an integral part to the question, even if at a more abstract
level the context need not influence the answer.

We have found that neither slope-height confusion
nor WYSIWYG effects seem to play an important
role. However, we infer from the written answers,

semistructured interviews, and classroom interactions
that many students do not engage sufficiently with the
questions on distance-time graphs. The question of
whether or not the speed is constant uses a graphical
representation, which cues a particular approach. We infer
that postintervention students engaged more with this
question, and to the same extent as with equivalent ques-
tions on water level versus time graphs. Not only did a
greater fraction of students answer the post-test question
correctly, some 10% of students gave more than one reason
for their answer.
However, when asked to determine a numerical value for

the speed, the wording appears to have cued many students
to apply a formula, and they ceased to engage with the
graphical representation or the question they had just
answered. It appears that in the context of this question,
the graph no longer represented information about the
nature of the motion, but just served to provide data
necessary to find an answer through an equation. Both
before and after intervention, this strategy led to answers
that are (at least implicitly) inconsistent with the previous
answer. However, in students’ previous experience in
school with linear graphs though the origin, that strategy
had been a productive and reliable tool.
We find that the greatest improvement took place on

answering questions on slope in the context-free setting.
This improvement could have come about without requir-
ing students to change their approach to answering the
question; they only needed to replace an incorrect proce-
dure with a better one. Nevertheless, since context-
free graphs were not included in any instruction, and
interval reasoning was, it appears that the intervention
(and the interval reasoning employed therein) had a posi-
tive effect.
Before and after instruction, students answered qualita-

tive questions on water level versus time graphs better than
questions on distance-time graphs; differences in answer-
ing the numerical question, in terms both of quality and of
prevalence, disappeared. This suggests to us that the
school experience with the distance-time graphs negatively
impacted on the students’ problem solving strategy and
their likeliness to engage with the question. Their answers
to the post-test suggest that a greater fraction of the
students engaged with the question than preintervention,
but this did not yet result in a much greater fraction being
able to answer the question fully correctly. (Indeed, post-
intervention, some students overrode their earlier correct
graphical interpretation when they applied the same incor-
rect equation to two points on the graph. These students also
engaged more deeply with the problem than before, but
with an undesired outcome.) The smaller improvement on
post-test questions on water level versus time and distance-
time graphs compared to context-free settings indicates that
technical difficulties played only a small role.
In summary, we have identified and quantified a number

of difficulties our students have with numerical linear
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distance-time graphs. The categorization of determining
the constancy of speed based on constant slope, interval
reasoning, both, or other, appears to be robust and does
not change after an intervention, although the prevalen-
ces do change. The success rate of determining a value
for the speed was found to be low, and independent of the
reasoning used to determine the constancy of the speed.
It would be interesting to see if these findings may be
generalized to other universities in other countries. We
have also given some suggestions to explain why such
a small fraction of students can successfully determine
the speed from a linear distance-time graph. While this
aspect of the work is necessarily somewhat speculative
in nature, we hope that this may stimulate further work,

likely more qualitative in nature, to address these
findings.
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