
Distributed Development – an Education Perspective  
on the Global Studio Project 

Ita Richardson  
Dept. of CSIS and Irish Software 

Engineering Research Centre  
University of Limerick, Ireland 

353.61.202765 

ita.richardson@ul.ie 
 

Allen E. Milewski 
Dept. of Software Engineering 

Monmouth University  
West Long Branch, NJ, USA 

1.732.571.7578 

amilewsk@monmouth.edu 
 

Neel Mullick 
Siemens Corporate Research 

755 College Road East 
Princeton, NJ, USA 

1.609.734.3668 

neel.mullick@siemens.com 
 

Patrick Keil 
Institut für Informatik – I4 

Technische Universität München 
Garching, Germany 

49.89.289.17386 

keilp@in.tum.de 
 
 
 
 

ABSTRACT 
The Global Studio Project integrated the work of Software 
Engineering students spread across four countries into a single 
project and represented, for most of the students, their first major 
“real-world” development experience. Interviews indicated that 
the major areas of learning were informal skills that included 
learning to establish and work effectively within a team, learning 
how to react quickly to frequent changes in requirements, 
architecture and organization, and learning to manage and 
optimize communications. Since all these skills require rapid 
reaction to unpredictable factors, we view them as improvisation 
and discuss the role of experiential education in facilitating 
improvisation.   

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education – curriculum.  

General Terms 
Management, Design, Experimentation, Human Factors. 

Keywords 
Software engineering education, Curriculum, Global Software 
Development 

1. INTRODUCTION 
The growth of Global Software Development (GSD) 
internationally has meant that distributed software teams are now 
being used widely.  The increase in volume and scope of globally 
distributed development will persist [7], and will have an impact 
on development processes, project management practices, 
architecture, maintenance, quality and so forth [16]. 

With a presence in 190 countries and over 30,000 software 
developers, it is inevitable that Siemens executes GSD projects.  
With an expanding global marketplace, a trend towards 
developing software in low cost countries, and the growing 
complexity and size of software systems, the percentage of 
Siemens projects that are globally distributed has been steadily 
increasing.  Siemens Corporate Research, Inc. (SCR) has been 
doing research aimed at developing a better understanding of the 
issues and impact of various practices with respect to GSD. 

In this paper, we describe part of this research, the Global Studio 
Project (GSP), which has organized the work of Software 
Engineering and Computer Science student teams from five 
Universities in four countries into a single global project.  We 
present and analyze experiences made by teams from three 
Universities.  Since our key focus here is on the educational 
aspects of GSP, we begin by summarizing previous literature on 
experiential learning in Software Engineering, especially 
distributed educational contexts in Software Engineering.  Then 
we describe the GSP process and what it meant for the existing 
University coursework.  Finally, we summarize our insights and 
those of our students to assess the role that experiences like the 
GSP can play in professional development. 

1.1 Teaching the “Real World” 
When we teach students, we try to give them an insight into what 
the ‘real-world’ is about.  We present material in courses such as 
software processes, components, architecture design, 
requirements engineering and human-computer interaction.  

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ICSE'06, May 20–28, 2006, Shanghai, China. 
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00. 
 

679



These academic experiences alone are not sufficient for preparing 
Software Engineering students for productive careers [19].  
Project managers require “a combination of technical, human 
resources, and management skills coupled with on-the-job 
experience” [22].  Thus, Universities need to educate 
professionals to have more than a technical understanding of the 
personnel and management issues surrounding successful project 
in real contexts.  But Surendran, et al. [24] note that a difficult 
thing to achieve in a curriculum is realism—real products 
signifying tangible, relevant achievements and real people 
signifying collaborative effort. These researchers utilized well 
known taxonomies of both learning mastery levels and Software 
Engineering topics [17] to develop a model of professional 
mastery appropriate for the real world.  The model depends on a 
complex interaction of subject matter and method of instruction.  
For example, basic factual information about core topics like 
requirements, design and testing are well suited to traditional 
classroom instruction because they require only recall and 
comprehension.  However, deeper levels of mastery, such as 
application of this knowledge, as well as its analysis and 
synthesis, require extra-classroom experiences such as practicum, 
apprenticeships and internships.  In addition, some critical 
categories of knowledge are best conveyed in these extra-
classroom experiences.  For example, how to work efficiently in 
collaborative teams is a skill that is difficult to teach in the 
classroom, but can only be practiced effectively in a real-world 
team-oriented project [1, 23]. 

In fact, we believe that there is a substantial set of important 
“informal” skills that fall into this category.  They include the 
ability to: 

• quickly learn about a domain or technology to begin project 
planning 

• figure out an organizational structure well enough to seek 
needed expertise efficiently 

• assess others’ abilities to support accurate team planning and 
status assessment and to know when to take the lead  

• react swiftly to project changes. 

While these skills undoubtedly benefit from classroom training 
indirectly, many of them have a strong improvisational element 
and depend on the context at hand.  Dawson [9] has vividly 
summarized several of these skills and has discussed their 
simulation in software engineering coursework.  Reif and Mitri 
[22] also draw the distinction between traditional classroom 
training and practical experience with “informal” knowledge.  
They postulate that senior managers “construct mental models for 
the project, problems, and opportunities under investigation.  
Next, they scan their mental experience repository for adequate 
actions to be taken against problems or to explore opportunities”. 

1.2 Teaching Distributed Development 
Since GSD is being used increasingly, it is critical that graduates 
develop relevant skills.  Many of the informal skills and 
knowledge areas described above are complicated significantly in 
a global context [6, 2].  Bruegge et al. [5] found that even with a 
rich set of collaboration tools and some face-to-face meetings 
between certain team members, actual collaboration and 
information sharing between geographically remote teams was 
difficult and infrequent.  Edwards & Sridhar [11] studied virtual 
teams of students distributed across different countries and found 
that trust between the teams and the clarity of task-structure 

definition were both key factors in the teams’ efficiency, 
effectiveness and level of satisfaction.  Although these factors 
play an important role in any project, the global nature of this 
study likely increased their importance.  

The role of less formal factors has also been made clear in the 
extensive body of research on remote and global collaboration 
outside of the educational context.  Hersleb and Grinter [14] 
found that while organizations attempt many mechanisms to 
coordinate cross-site work this is vulnerable to imperfect foresight 
and unexpected events.  Solving these requires workers skilled at 
informal communication and negotiation.  Moreover, GSD makes 
all these activities more difficult; the lack of subtle modes of 
communication often results in decreased perception that remote 
coworkers are helpful, decreased ability to react to changes 
quickly and increased project delays [15].  GSD has stronger 
needs for planned communication patterns and – paradoxically –
for a higher flexibility and adaptivity of processes. 

2. Experiment within Siemens Corporate 
Research 
Led by SCR and assisted by Harvard Business School, five 
Universities internationally set up seven distributed student 
development teams in order to study the problems of GSD.  At the 
same time, the project allowed the students involved to develop 
an experiential understanding of GSD. 

To get results as close as possible to problems appearing in real 
projects, the GSP was set up to shadow an actual GSD project in 
Siemens.  The project organization, management, and the system 
being developed largely mirrored that of the real project.  This 
experiment allowed investigation of particular questions without 
risk to current Siemens business.  The SCR central team was 
responsible for the high-level requirements, software architecture, 
system test and integration, and project management.  Distributed 
student teams were responsible for design, development and unit 
test for defined work packages (core modules / sub-systems).  The 
central team included two M.Sc. students from TUM who 
completed research dissertations. 

The central team modified the requirements from the real project 
to accommodate student resources available and to allow for 
development and testing without specialized environments.  They 
defined the architecture keeping in mind both quality 
requirements and the composition of the student teams.  The 
central team included a build meister and supplier manager.  The 
build meister was responsible for system testing, integration, 
configuration management, and delivery of artifacts from the 
teams.  Supplier managers managed particular student teams.  
They were responsible for monitoring progress of the team, being 
the first point of contact and coordinating the communication 
between the teams and other project members.  Teams, as a rule, 
were not permitted to communicate directly with one another but 
spoke directly to their supplier manager. 

The project plan reflected the iterative nature of the intended 
development process.  Because of the communication issues 
typically experienced in GSD projects, additional controls were 
put in place to track progress against the plan and to identify 
issues early.  One of the approaches taken to accomplish this was 
to define four to six week milestones with clearly defined 
deliverables by all the teams and an integration task at each of the 
milestones (engineering releases).  The first engineering release 

680



was essentially a “hello world” with a minimal delivery due from 
each team.  This ensured that all of the infrastructure was in place, 
identified any major issues in the development and delivery 
process and served as a first test for the integration process.  
Subsequent engineering releases were more closely related to the 
releases expected from a real-world distributed project. 

The make-up and background of the University teams varied.  
Monmouth University, New Jersey, U.S.A. had three teams 
comprised of 5 Masters Students each.  The other Universities - 
University of Limerick, Ireland, Technische Universität München, 
Germany, Carnegie Mellon University, U.S.A., and Indian 
Institute of Information Technology, India – each had one team.  
The team in the University of Limerick was composed of 5 M.Sc. 
in Software Engineering students and the team in Technische 
Universität München was composed of 3 Masters students.  The 
teams were engaged in the definition phase of GSP.  The 
schedule, available weekly student hours, and the geographic 
proximity of the teams to the central team were all considered 
when defining the original work packages which were defined 
and distributed to all of the teams.  The initial work packages 
contained a partially defined requirements specification, high 
level architecture, market intent, specification for the protocol 
used by the field systems, high level project plan, and a 
description of the tasks to be completed by the team for the first 
engineering release. 

2.1 Course Summary 
The courses participating in the GSP at University of Limerick 
(UL), Monmouth University (MU) and the Technische Universität 
München (TUM) have many features in common.  First, they are 
all graduate (M.Sc) classes designed for teams of between three 
and twelve students with the goal of teaching them “what it means 
to work in a team and how to go through the whole project life 
cycle” [13].  Students collect and analyze requirements, create an 
architecture, detailed software design, and often a user-interface 
design. Teams also develop the working software, carry out a test 
plan and provide customer documentation for installation and 
operation of the product.  Typically, projects in these courses 
develop fairly simple applications.  Teams work fairly 
autonomously; the course instructor serves as an advisor.  
Students generally enter the courses with some experience, having 
completed a relevant undergraduate degree.  Some of them have 
recommenced formal education after having spent time in 
industry.  All GSP participants in these courses were volunteers.  

There were also some differences between participating 
institutions.  For example, at UL, students had additional work, to 
complete their M.Sc. dissertations. They had to compare an aspect 
of the GSD process, such as project management, with that local 
software development, providing insights into differences.  At 
MU, the graduate practicum is a capstone course that also requires 
a series of team documents, such as project plan, requirements, 
design and test plans, etc.  Many of the GSP participants were 
employed together as government SE interns, but they were 
strongly encouraged to interact only within their teams, not across 
team boundaries.  At TUM, after the completion of the project, a 
report has to be prepared and the results are presented to other 
students and the chair staff.  The team was asked to define, adopt 
and evaluate its own processes based on agile methods.  As only 
the global process was defined, the students decided on using 
Extreme Programming and SCRUM as a base for their process.  

2.2 Research Project 
In addition to GSP being an educational experience, research 
activities focused on global collaboration and engineering 
process.  During the year, students completed interviews and 
questionnaires designed and conducted by Harvard Business 
School with input from the research partners.  Students completed 
a weekly on-line questionnaire, which focused on communication 
patterns and on their perception of the current project status 
(products, understanding of requirement, etc.).  Each group 
participated in a monthly telephone interview.  Additionally, each 
team member participated either in a semi-structured individual 
interview or in an open-ended email questionnaire, focusing on 
the development process within which the students were involved 
and the educational outcomes from this process.  Content analysis 
to identify overarching themes invoked by the participant 
themselves was carried out by the authors.  A broad analysis of 
the frequency of different concepts was conducted based on an 
interrogation of the interview transcripts.    

2.3 Educational Value and Insights 
Motivation for Participating:  The main reason GSP students 
volunteered was that they were interested in getting some ‘real’ 
development experience.  Generally this was driven by a curiosity 
about environments outside their own academic and employment 
contexts.  For example, one student was eager to work “with a 
firm that has a great reputation in the software world.  I wanted 
to learn how industries other than government produce software.”  
Another mentioned that “working with a large-scale company and 
the possibility to have our work actually be used by the customer 
in the future was intriguing.”  Yet another “liked the ’realness’ of 
the project as compared to a made-up one”.  Several mentioned 
that it would look good on their CVs.  UL tied the GSP to a 
dissertation and some students participated as it gave them an 
interesting dissertation topic.  These students had to become 
reflective practitioners on the project studying one chosen 
process. 

Teamwork:  Some of the students found that working on a team in 
a real-world environment was much different than what they had 
previously experienced in class projects.  Comments included: 
“There can be a lot of problems with team dynamics”; “How 
difficult it is to work in groups, …even organizing times to suit 
everyone”; “Working in a team – working through problems 
faced and task allocation”.  Depending on previous experiences, 
some teams had less difficulty with this aspect.  “Team had 
common concept of how well we wanted to get the project done”.  
“We were able to work together, come up with creative solutions.  
Some were good at development, some at documentation.  One 
would make a breakthrough, then the others put their shoulders to 
the wheel”.   

Involvement in a life-cycle:  This project gave students the 
opportunity to be involved in a software project’s complete life-
cycle, from where they had to define the partial requirements 
given by SCR to providing a tested product.  In the classroom, it 
is very difficult to give a project which includes a full life-cycle.  
Students found that “It was good to figure out how work 
packages should be delivered”.  “How do you go about 
doing a requirements document?  We all knew it needed to 
be done but how to do it was a problem”.  

Commencing the Project:  One of the most difficult things for the 
student teams was figuring out how to begin the project.  “The 

681



only difficulties I experienced was getting started.”  Some of 
these difficulties even preceded requirements gathering.  Among 
others, students were provided with a very large document 
describing an industry standard protocol that they were to use, but 
most students did not read the details.  SCR referred them to this 
document, and eventually, teams found ways to gain expertise on 
the protocol.  For example, one team assigned one team member 
to read the document as his sole responsibility. 

Changing requirements:  A key insight made by many students 
concerned the chaotic and frequently-changing nature of real 
projects and the importance of reacting quickly to these changes.  
This is a point made often in the classroom, but the GSP 
experience made it real.  “Our customer did not know what he 
or she wanted- a very common thing in the software world.” 
“The industry benefit was that we saw how a real project is 
run- delays, changing requirements, shifting of personnel, 
etc”.  The changes during the project resulted in coordination 
problems since it got “very hard to resolve open questions via 
email, especially when you don’t know what you don’t know” 
and because “you don’t know where to start asking 
questions” because so many new things came up. 

Communication:  Because of the nature of the research, nearly all 
extra-team communications were between each student team and 
the SCR central team, rather than between two or more student 
teams.  Compared with traditional classes and practicum, the GSP 
was viewed positively because it exercised skills in 
communicating with other technical people (on the central team).  
“I got experience in interacting with other software organizations.  
A very common thing to do in the work environment”.  “In this 
project the customer knew more about the technologies so it was 
more demanding.  It was not easy to get around or fluff at the 
end.”  “The fact that the Siemens representatives themselves were 
very technical provided some benefit in the fact that they required 
us to develop things … we were not familiar with.  So, we had the 
opportunity to learn some new concepts/tools.”  Communicating 
with the SCR team, however, was not always smooth.  Along with 
difficulties collecting clear requirements, the most common 
difficulty reported by participants was communicating with the 
central team.  In some cases this was because of personnel 
changes midway through the project. In other cases it was because 
the central team did not have clear answers, because it took 
substantial time to ramp the project up to a smooth state.  In many 
cases, however, the problem was that the student teams were not 
proactive in asking questions of the central team or were not adept 
at integrating answers into their own cognitive frameworks.  “We 
were inexperienced.  We didn’t know when to go to SCR.”  
“At times we did not speak the same terminology and it was 
confusing.  The central team would mention something in 
talking about design issues and we would not understand 
because our terminology for that same issue might be 
different.” 

In the context of GSD, face-to-face contact with central team 
members proved to be extremely important, even though it was 
infrequent.  One student wrote that “it seems that the lack of 
face-to-face talk can lead to apparent similar perceptions 
while both parties still have differing “images” of the 
system.  So being precise and verifying even aspects taken 
for granted is important, which can only be accomplished by 
intensive communication.”  At one point, one MU team 
requested a visit from their supplier-manager in order to clear up 

what seemed like endless confusion over their software designs.  
This was recognized to be a useful tactic and was quickly 
followed by similar requests from all MU teams.  In all cases, 
these visits resulted in a marked improvement in understanding 
and progress continued after the meetings.  Communication may 
have been especially difficult for the UL team because they did 
not have a supplier manager responsible for them.  All of their 
communication with central team personnel was on a more ad hoc 
basis.  This caused communication problems - “We felt it came 
from – we felt isolated – that was part of the project”.  
“There should be more phone conferences”.  “Lots of 
problems were tactical – like how to communicate with 
SCR” as the team did not know them personally.  Again, face-
to-face meetings were critical.  Until they had an opportunity to 
meet face to face, both formally at meetings and socially with 
SCR personnel, did they relax about communicating regularly 
with SCR.  The TUM team had no supplier manager, but the 
advantage that a German student joined the SCR team for the 
second half of the project.  Even if their English skills were very 
high, this eased communication “because some things are 
easier to explain in German.”  At the beginning, though, 
“communications with the central team was not effective.”  
After meeting one representative of SCR face-to-face, the 
students had “a better idea who to ask questions to.”  All this 
shows why – independent of team size and location – face-to-face 
communication was rated “most effective”.  

2.4 Improvements and Expansions 
Scheduling:  One of the difficulties the students faced was that 
they were not a full-time development team, but also had to 
schedule coursework and other projects while working on the 
Global Studio Project.  This caused difficulties - “Sometimes they 
(SCR) weren’t happy with us – we didn’t always get back to SCR.  
We didn’t want to give the time to be available everyday to get 
back to them”.  It is important that we, as project supervisors 
ensure that the students maintain a balance between what they are 
doing for SCR and what they are doing for their other 
coursework: “How to fit this into the course – balancing between 
getting a project in for 30% and an SCR deliverable”. 

Development process:  SCR provided a development process 
called MD.RAD (Model Driven Rapid Application Development) 
that is specifically designed for global projects and which was 
planned to be applied as a reference process for GSP.  In contrast, 
local teams needed to establish their own processes.  There is 
huge potential for future GSP phases to gather more and deeper 
insights in the strengths and weaknesses of MD.RAD as well as of 
local methods.  One option could be to ask one or two teams to 
choose different methods and implement them.  For the students, 
this would result in a deeper understanding of such processes.  For 
the researchers and the instructors, such experiments would lead 
to improvements in the overall process and would add new 
experiences on how to plan and control distributed projects.  The 
work package to define, implement and evaluate local methods 
was planned for the first phase, but its priority was displaced 
downward when the software implementation phase began.   

Project planning:  Future GSP phases need to provide more 
robust methods for information sharing and for alerting teams to 
project changes.  “SCR had nothing set up to keep the team 
informed that things were happening – change to requirements, 

682



change to project plan, change in personnel”.  “What’s taking 
up our time is finding out what we are supposed to do.” 

Provision of Resources within University:  A requirement 
from SCR was that the students’ work was under Non-disclosure 
agreement.  This did not cause a problem in general, but it did 
require that students were located in a laboratory which gave 
them some privacy.  This is not always an easy task to achieve 
within a class of people who are also working on projects. 

Furthermore, at all the Universities, the students were slow to 
discuss problems with their dissertation supervisor, as this could 
be seen as a weakness on their part, and might affect their final 
grade.  They need a teaching support person who would be able to 
help them when their technical skills were weak so that they 
would not have to call on their supervisor when problems arose. 

Inter-Team Communication:  Some of the communications 
difficulties resulted from teams being restricted to interactions 
with the central team; there was a large load on the central team 
and the level of detail that could be conveyed by this 
“middleman” was sometimes limited.  At one point in the project, 
a single MU team was allowed to communicate directly with one 
of the teams of Carnegie Mellon University over the details of a 
shared interface.  In this case, direct communication seemed to 
simplify communication.  Of course, with globally distributed 
teams, language, distance and cultural differences make such 
communication more complex.  Nonetheless, in the next phase of 
GSP, inter-team communication will be encouraged and studied 
and in this sense will be more of a traditionally global 
collaboration.  This will also give students the opportunity to 
directly perceive cultural differences and their effects and to learn 
how they can be handled. 

Tools:  An important side effect of a real-world project like the 
one presented is “to familiarize students with some of the CASE 
tools used in the industry” [23].  Therefore, without focusing the 
project on this, some of the teams could be asked to evaluate 
different tools (e.g. for configuration management, testing etc.) 
and configure the ones chosen.  This time, the central team took 
these decisions. 

3. Conclusion  
Instructors’ involvement in this project centered on both research 
and educational perspectives.  From the research perspective, this 
project affords the opportunity to study the effects of GSD and 
can help answer questions such as: how should project 
management be different in a local / global environment?  How 
can the software be divided out among teams?  How can the 
software be integrated successfully?  What information-seeking 
strategies are used in global teams?  To answer these questions, a 
huge amount of data was collected and many experiences have 
been documented for evaluation. 

From an educational standpoint, instructors’ interest in the GSP 
centered on its opportunity for real-world experiences.  Students 
had to set up their own project team, appoint a project manager, 
manage the work coming in from SCR, deliver output, work with 
modifications required by SCR and communicate with people 
they had not met.  This gives them experiential learning in a 
global environment.  Similarly, most students volunteered for the 
project in an active attempt to get real experience outside their 
own academic and employment contexts.  

A key concern of this investigation has been to understand in 
detail what can be learned in such a real-world project.  Student 
interviews and questionnaires revealed that the major areas of 
learning were informal skills that included learning to establish 
and work effectively within a team, learning how to react quickly 
to frequent changes in requirements, architecture and 
organization, and learning to manage and optimize 
communications in the GSD environment.  This list of key areas 
learned may not be surprising in that they are all well-known and 
critical areas of practice required to be an effective software 
engineer.  What is notable is that these areas are all those that are 
traditionally thought to be difficult to teach in a standard 
classroom setting.  Their centrality in the GSP is consistent with 
the framework proposed by Surendren et al, [24].  Students 
struggled with these areas during their GSP experience but 
learned something about the behaviors required to react 
successfully.  

A useful model for the needed behaviors is that of improvisation, 
being a complex cognitive process of adapting already-learned 
material and high-level rules and heuristics to apply to 
unanticipated events in new situations.  Successful improvisation 
requires that the improviser has a large repertoire of previously-
learned solutions and techniques to draw on and then creatively 
apply them in reaction to a current, dynamic situation [3].  While 
improvisation is often associated with artistic endeavors, its value 
has more recently been realized in domains as diverse as 
organizational management [3] and emergency-response [20].  
Finally, Dybå, [10] has concluded that improvisation is a critical 
skill for the success of professional software organizations- 
especially those that work in small teams.  According to Dybå, as 
software environments become increasingly unpredictable, 
successful software engineering requires a careful balance 
between disciplined exploitation of already-learned processes and 
experimentation with new behaviors.  The correct balance 
depends on the context of the specific project- both team size and 
project turbulence. 

We believe that the most significant educational value of the GSP 
was in the area of improvisation.  When students joined the 
project, they had already experienced most or all of the traditional 
class work associated with software engineering programs.  This 
gave most of them at least a basic a repertoire of project process 
models, team organizations, architectural and software design 
patterns and testing strategies.  While stringing these together in a 
single, complex project provided some educational value in itself, 
the real discoveries came from the frustrations and anxiety 
associated with the need to research, plan, communicate and 
respond to frequent changes quickly in the GSD environment. 

Besides the challenges to transfer theoretical knowledge into a 
realistic project setting, which requires informal skills and 
improvisation talent, students also learn to integrate and combine 
their knowledge on different subjects.  In a project environment 
like the one for GSP, students are forced to regard testing not as a 
problem of models or even tools, but also as a managerial, 
organizational and technical challenge. 

From the instructors’ standpoint, it is tempting to try to teach 
students how to improvise within a software project even before 
their experience with it.  However, this may not be feasible.  
Improvisation is often believed to be a “learnable” skill; there are 
educationally-oriented treatments of it in artistic contexts [18].  

683



Mirvis [21] describes the benefits of practicing improvisation as 
part of a business education.  However, virtually all of these 
treatments avoid direct instruction in favor of exercises and 
scenarios where students can practice and gain insight into the 
skills needed.  Drawing on these exercises, students become 
aware of what needs to be improvised, develop a vocabulary of 
improvisation to facilitate planning and also become desensitized 
toward the anxiety associated with the dynamic environments 
where improvisation is required [21].  We feel these insights are 
as important for software engineering students as they are for 
other fields, and that the GSP has provided an useful environment 
to facilitate their learning.  We are also sure that this project 
increased – ceteris paribus – our students’ ‘market value’ by 
experiencing a large-scale project and getting insights into the 
‘real world’ of globally distributed software development. 

4. Acknowledgement 
We would like to thank the students who participated in the 
project.  Participation by UL was funded by Science Foundation 
Ireland through the GSD for SME project. 

5. REFERENCES 
[1] Alfonso, M. I. and Mora, F. Learning Software Engineering 

with Group Work. In Proceedings of the 16th Conference on 
Software Engineering Education and Training (March 20 - 
22, 2003). CSEET. IEEE Computer Society, Washington, 
DC, 309.  

[2] Azadegan, S. and Lu, C. An international common project: 
implementation phase. In Proceedings of the 6th Annual 
Conference on innovation and Technology in Computer 
Science Education (Canterbury, United Kingdom). ITiCSE 
'01. ACM Press, New York, NY, 125-128.  

[3] Barrett, F. J. Creativity and Improvisation in Jazz and 
Organizations: Implications for Organizational Learning. 
Organization Science, 9, 5 (Sep/Oct, 1998), 605. 

[4] Brereton, P., Gumbley, M. and Lees, S. Distributed Student 
Projects in Software Engineering. In Proceedings of the 11th 
Conference on Software Engineering Education and 
Training (February 22 - 25, 1998). CSEET. IEEE Computer 
Society, Washington, DC, 0004.  

[5] Bruegge, B., Dutoit, A. H., Kobylinski, R. and Teubner, G. 
Transatlantic project courses in a university environment. In 
Proceedings of the Seventh Asia-Pacific Software 
Engineering Conference (December 05 - 08, 2000). APSEC. 
IEEE Computer Society, Washington, DC, 30  

[6] Carmel, E. Global Software Teams. Prentice-Hall, Upper 
Saddle River, NJ, 1999. 

[7] Casey, V. and Richardson, I. Virtual Software Teams: 
Overcoming the Obstacles, 3rd World Congress on Software 
Quality, (September 26th-30th, 2005). Munich, to appear. 

[8] Davison, D. Offshore Outsourcing: Market Overview. 
METAspectrum. October 2004. 

[9] Dawson, R. Twenty dirty tricks to train software engineers. 
In Proceedings of the 22nd international Conference on 
Software Engineering (June 04 - 11, 2000). ICSE '00. ACM 
Press, New York, NY, 209-218.  

[10] Dybå, T. Improvisation in Small Software Organizations. 
IEEE Software. 17, 5 (Sep. 2000), 82-87.  

[11] Edwards, H. K. and Sridhar, V. Analysis of the Effectiveness 
of Global Virtual Teams in Software Engineering Projects. 
In Proceedings of the 36th Annual Hawaii international 
Conference on System Sciences (January 06 - 09, 2003). 
HICSS. IEEE Computer Society, Washington, DC, 19.2.  

[12] Favela, J. and Peña-Mora, F. An Experience in Collaborative 
Software Engineering Education. IEEE Software. 18, 2 (Mar. 
2001), 47-53.  

[13] Gnatz, M., Kof, L., Prilmeier, F. and Seifert, T. A Practical 
Approach of Teaching Software Engineering. In Proceedings 
of the 16th Conference on Software Engineering Education 
and Training (March 20 - 22, 2003). CSEET. IEEE 
Computer Society, Washington, DC, 120.  

[14] Herbsleb, J. D. and Grinter, R. E. Splitting the organization 
and integrating the code: Conway's law revisited. In 
Proceedings of the 21st international Conference on 
Software Engineering (May 16 - 22, 1999). ICSE ‘99. IEEE 
Computer Society Press, Los Alamitos, CA, 85-95.  

[15] Herbsleb, J. D., Mockus, A., Finholt, T. A. and Grinter, R. E. 
Distance, dependencies, and delay in a global collaboration. 
In Proceedings of the 2000 ACM Conference on Computer 
Supported Cooperative Work (Philadelphia, PA, United 
States). CSCW '00. ACM Press, New York, NY, 319-328.  

[16] Herbsleb, J. D., Paulish, D. J. and Bass, M. 2005. Global 
software development at Siemens: experience from nine 
projects. In Proceedings of the 27th international Conference 
on Software Engineering (May 15 - 21, 2005). ICSE '05. 
ACM Press, New York, NY, 524-533.  

[17] Hilburn, T., Hirmanpour, I., Khajenoori, S., Turner, R. and 
Qasem, A. A Software Engineering Body of Knowledge, 
Version 1.0, tech. report CMU/SEI-99-TR-004, Software 
Eng. Inst., Carnegie Mellon Univ., Pittsburgh, 1999. 

[18] Johnstone, K. Impro: Improvisation and the Theater, Theatre 
Arts Books, 1979. 

[19] McCracken, W. M. Counterpoint-SE Education: What 
Academia Can Do. IEEE Software. 14, 6 (Nov. 1997), 27.  

[20] Mendonca, D. and Wallace, W. A. Studying 
Organizationally-situated Improvisation in Response to 
Extreme Events. International Journal of Mass Emergencies 
and Disasters, 22, 2 (August 2004), 5-29. 

[21] Mirvis, P. H. Practice Improvisation. Organization Science, 
9, 5 (Sep/Oct, 1998), 586. 

[22] Reif, H. L. and Mitri, M. How university professors teach 
project management for information systems. Commun. 
ACM 48, 8 (Aug. 2005), 134-136.  

[23] Robillard, P. N. Teaching Software Engineering through a 
Project-Oriented Course. In Proceedings of the 9th 
Conference on Software Engineering Education (April 21 - 
24, 1996). CSEE. IEEE Computer Society, Washington, DC, 
85.  

[24] Surendran, K., Hays, H. and Macfarlane, A. Simulating a 
Software Engineering Apprenticeship. IEEE Softw. 19, 5 
(Sep. 2002), 49-56.  

 

684


