
RoboCode & Problem-Based Learning:
A non-prescriptive approach to teaching programming

Jackie O’Kelly
NUI Maynooth, Ireland

jackie.okelly@gmail.com

J. Paul Gibson
NUI Maynooth, Ireland

pgibson@cs.nuim.ie

ABSTRACT
The fundamental principle behind Problem-based Learning
(PBL) is that the problem is the driving force that initi-
ates the learning. In order to function effectively in a PBL
environment a good set of problems is required. Solving
problems is a vital element within Computer Science and
yet the discipline has been slow to embrace PBL as an ap-
proach to learning. The net result means that there are few
good PBL problems available to assist new practitioners with
implementation. PBL emphasizes a real-world approach to
learning, and we present a RoboCode Competition as a can-
didate for a good, realistic PBL problem within the computer
science discipline. We list and identify the criteria that cat-
egorise a PBL problem as good and validate the RoboCode
domain against these criteria. We argue that the concept of
freedom — in different guises — plays a key role in making
PBL a good mechanism for teaching programming, and for
making RoboCode a good domain for PBL.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education; I.2.6 [Learning]: Misc.; D.2
[Software Engineering]: Misc.

General Terms
Problem Based Learning

Keywords
Computing Education Research

1. INTRODUCTING PBL AND CS1
Programming is a fundamental skill that all Computer

Science (CS) students are required to learn. However, pro-
gramming courses are generally regarded as difficult, and
often have the highest dropout rates[17]. A psychological
overview of programming pedagogy by Winslow[20] reports

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’06, Univ. of Bologna, Italy, 26 - 28 June 2006.
Copyright 2006 ACM ? ...$5.00.

that: novice programmers neglect strategies, are limited to
surface knowledge of the subject, and that this knowledge
is fragile. Fragile knowledge is described as something the
student knows but fails to use when necessary. Jenkins[11]
argues that a surface approach to learning is inadequate in
such a practical subject and advocates a deep,“learn by do-
ing” approach.

Our experience in first year programming (CS1) in the CS
department at NUI Maynooth (NUIM) reflects the issues
with shallow learning. In order to address this, we imple-
mented a Hybrid Problem-based Learning approach to the
CS1 module in the academic year 2003-04: the implemen-
tation of this work is reported by O’Kelly[12], with analysis
reported by O’Kelly and Gibson[13].

Within the PBL environment the problem acts as the cat-
alyst that initiates the learning process. It is said that this
way of learning encourages a deeper understanding of the
material, rather than surface learning, because it is the stu-
dents who are actively “doing”. As the problem is such a
critical component of the learning process it is imperative
that one uses good problems. In 2001, Duch identified five
characteristics of what makes a PBL problem good[7]:

1. Effective problems should engage the students’ interest
and motivate them to probe for deeper understanding
of the concepts being introduced.

2. PBL problems should be designed with multiple stages.

3. The problems should be complex enough that coopera-
tion from all members of the group will be necessary in
order for them to effectively work towards a solution.

4. The problem should be open-ended.

5. The content objectives of the course should be incor-
porated into the problems.

One of the major stumbling blocks to the implementation
of PBL within any discipline is the lack of a good set of
problems. However, with the exception of a few disciplines,
good PBL problems usually do not appear in textbooks[18].
Clearing houses provide an avenue to allow for the sharing of
problems, but unfortunately there is a lack of CS problems1.
This could be partially explained by the small number of
reported PBL practitioners in the CS discipline[14].

1One could argue that there is an abundance of CS pro-
gramming problems available; however, the vast majority of
these problems place emphasis on the learning of a particu-
lar programming concept rather than problem solving.

2. THE ROLE OF FREEDOM
In this section we discuss the role of freedom in education.

We take cognizance of the fact that while a price must be
paid for this freedom, our role as educators within the CS
discipline, is to create an environment (particularly for first
year students) that allows them the freedom to embrace the
explorative, creative process of solving problems.

2.1 Freedom in education
It is our view that in tertiary education students are en-

couraged to think for themselves, express their views, ques-
tion, discuss and be free to disagree in their pursuit of knowl-
edge. However, our methods of instruction span a contin-
uum from the prescriptive to the chaotic, with both extremes
working against the student. When we are prescriptive we
leave no room for the student to seek knowledge, we see him
as the empty vessel — or the blank slate — and our job
is to fill the vessel or to write on the slate. At the other
extreme we provide little or no structure to guide the stu-
dent in developing their knowledge. A number of positions
exist along this continuum where we can provide scaffolding
for the students and still allow them the freedom to seek
knowledge. The old adage that one learns from one’s mis-
takes allows for creativity, experimentation, and reinforces
the belief that making a mistake is not always wrong.

It is our experience that it is very difficult to find a prob-
lem that is just stable enough in the sense that — for a
wide range of students — the balance between being non-
prescriptive and open, but not so open as to be chaotic, is
assured. We argue that the RoboCode problem fulfils this
stability criteria.

2.2 Freedom in CS and SE
Software engineering is not constrained by the physical

laws and engineering principles that govern other engineer-
ing disciples. Within this unconstrained environment, soft-
ware engineers manage the complexity of choice through
consistent application of fundamental conceptual tools such
as abstraction; this allows them to continually improve the
software engineering process - “re-writing the rules” for de-
velopment, making the process as much an art as a science.”
However, a price must be paid for this freedom, which is
why design and quality management are such important is-
sues for software engineering. The true role of design is to
create a workable solution to an ill-defined problem, thus
software design is a creative process that cannot be reduced
to a routine procedure, it involves discovery and invention,
and it frequently requires intuitive leaps between abstraction
levels[10].

2.3 Freedom in CS1
The majority of students entering CS1 (in Ireland) believe

that because “learning by rote” was successful for them in
the past, it will continue to be successful. However, learn-
ing to program is not suited to rote learning: it requires the
student to understand the problem, develop a solution, im-
plement this solution in a programming language, compile
the program, develop test data, test the program, and iter-
ate the debug, compile, test cycle until they have a working
solution. Researchers have found that a student’s learning
style can affect their performance in introductory computer
science courses[5]. In order to facilitate these diverse learn-
ing styles we need to create an environment that allows stu-

dents the freedom to divest themselves of the necessity they
feel to rote learn and to embrace the explorative, creative
process of solving problems. They must learn that exper-
imentation is fundamental to all scientific disciplines, and
they must become proficient in their use of a computer as
their laboratory for designing and implementing computer
science experiments.

3. ROBOCODE

3.1 Background and Motivation
The retention of first year students in CS is a concern

for universities globally. In order to improve retention in
our University we tried to create an environment that was
both fun and educational. When we were approached to
help develop a National RoboCode Competition2, both au-
thors saw potential benefits to enhance their PBL initiative
and add an interesting challenge for their students. The
competition was aimed at first year programming students,
allowing them to demonstrate their programming abilities,
advance their knowledge and have some fun. The fun tran-
spired to be what Papert[15] termed “hard fun”; in that it
is both challenging and interesting, and this implies “hard”.
Barrett[1] argues that learning in a PBL environment de-
mands both the fun of playing with ideas and the hardness
of refining and reworking ideas, and that both complemen-
tary parts are needed for learning. In order for any of this
to occur we need the right type of problem to support the
process.

3.2 Technical Information
RoboCode3, developed and released by IBM in 2001 is

a programming game (and development environment) that
teaches Java in a fun, rewarding manner. The game en-
vironment consists of a small rectangular battlefield popu-
lated with robot-tanks. These cleverly programmed graphi-
cal robot-tanks manoeuver, search and destroy other robot-
tanks on screen. The skeleton of a robot-tank is provided in
the class Robot; in addition, sample robot-tanks that per-
form a specific type of action are supplied. Students can look
at how a robot-tank performs and peruse the correspond-
ing Java code. They can combine actions from a number
of robot-tanks and immediately test out the performance
of the new robot-tank in the battle arena. Bonakdarian
& White[3] argue that RoboCode promotes “Learning by
subversive means” where the students have to learn in or-
der to “play” and are motivated by wanting to participate.
Loadholtes4 and Hartness[9] promote RoboCode as a tool for
teaching Artificial Intelligence (AI); while learning about AI
is not a learning outcome of the CS1 curriculum, students
must consider tactics for survival so that their robot-tanks
behave and respond “intelligently” to their environment.

4. ROBOCODE IN THE CLASSROOM
The RoboCode Competition is introduced to students mid-

way through the year. Students will have covered half the
curriculum, thereby giving them knowledge of fundamental

2Phil Bourke, Tipperary Institute of Technology, Ireland ini-
tiated the National RoboCode Competition.
3RoboCode Central - http://RoboCode.sourceforge.net/.
4Loadholtes, N., (2004) IBMs RoboCode: A Platform for
Learning AI, http://ai-depot.com/Essay/RoboCode.html.

programming concepts: variables, assignment, control flow,
iteration, functions (methods), etc. . . Students’ abilities to
transfer what they have learned to new situations provide an
important index of adaptive, flexible learning[4]. RoboCode
is implemented using event-based programming and more
advanced programming features that the students have not
(yet) been exposed to.

4.1 Engaging the students’ interest
It is well-accepted that effective problems engage the stu-

dents’ interest and motivate them to probe for deeper under-
standing of the concepts being introduced. It is also known
that the students’ initial reactions to a subject or topic is
critical to them gaining an interest. Consequently, it is im-
portant that the students are introduced to the RoboCode
problem in an appropriate manner. We chose to do this by
giving them an initial statement that emphasises the com-
petitive nature of the problem:

Develop a robot-tank capable of beating all its
competitors and winning the competition. See
www.cs.nuim.ie/RoboCode for guidelines and rules
of the competition.

Engaging the students’ interest or sowing the seeds of inter-
est requires that students become stakeholders in the prob-
lem scenario.

4.2 The need for team-work
The decision to enter the competition is an individual stu-

dent’s; however, the rules of the competition dictate that a
team can include up to three people. In many programming
situations, the primary working unit is a team, not an in-
dividual[19]. Constructing a team is part of the problem
scenario; students have prior knowledge of how teams work
as they have been participating in teams during semester 1.

DeMarco & Lister[6] describe the concept of a “jelled
team” as a group of people so strongly knit that the whole
is greater than the sum of the parts. They argue that once
a team begins to jell, the probability of success goes up dra-
matically — they don’t need to be motivated as they already
have (learning) momentum. We encourage students to find
team members with complementary skills and roles as, for
example: a strategist, a programmer, a mathematician, a
designer, a documenter, a tester etc. . . If a team combines
the right balance of skills then their learning and opportu-
nities for success increase, as each member has a specific
talent to contribute.

We require that all teams submit an entry form in order
to partake in the internal competition; the winners of the
internal competition go forward to represent the University
at the national competition. From the moment a team of
students submit their entry form to the internal competition
they have become stakeholders.

4.3 Importance of experimentation
All teams start by playing around with the sample robot-

tanks in the standard RoboCode libraries. The students
observe how the robot-tanks perform in a game, look at the
code and try to understand how it works. Then, the students
make small changes to one of the robot-tanks and observe
and document the results, asking: does the robot-tank per-
form better or worse due to the change? One of the features
of RoboCode is that the results of one’s efforts can be seen

instantly, this “instant gratification” speeds up the devel-
opment learning cycle and is analogous to the “prototyping
model” used in software development.

Experimentation — for gaining understanding — is key
to the software prototyping process. It is often used when:
a customer has a general set of objectives, but is unclear
on the detail; or if a developer is unsure of the efficiency
of an algorithm, or the adaptability of an operating sys-
tem; or there is debate about the form that the human-
machine interaction should take; etc. . . The process begins
with requirements gathering where the developer and cus-
tomer meet and define the overall objectives for the soft-
ware. A “quick design” then leads to the implementation of
a prototype. This prototype is evaluated by the customer
(user) and is used to refine the requirements for the software
to be developed[16]. This process structure is analgous to
the way in which RoboCode teams work in order to develop
their final “product”.

Students become enraptured by their ability to make the
robot-tank “fun”, “weird”, “strange”, etc. . . ; initially, they
alter the appearance of the robot-tank’s colours and make
the colours synonymous with their team name. This nat-
urally progresses to them wishing to alter their tank’s be-
haviour. Students are willing to experiment: fear of failure
is not an issue; if what they try does not work they go back
to an earlier version and try again (if their implementation
was incorrect with respect to their design) or try something
different (if their design did not prove to be an improvement
on previous models).

4.4 Re-Use
Once the students have gained an understanding of how

the robot-tanks work they set about researching how other
programmers have developed robot-tanks. There is a plethora
of robot-tanks and code available on the Internet; there
are numerous sites that explain how to develop robot-tanks
through the use of on-line tutorials, or tips-and-tricks. At
this stage in their academic careers, this provides an ideal
opportunity to introduce the notion of plagiarism and its
relevance to software re-use5.

The students are required to acknowledge any piece of
code (or design) that they use but that they did not de-
velop themselves. A check is run on the code submitted and
the penalty for not adhering to the rule is disqualification.
Bierre & Phelps[2] cite this proliferation of code as the rea-
son they implemented a variant of RoboCode that addresses
the availability issues. To date, students have understood
the seriousness of plagiarism, and this is a valuable lesson
to learn early in one’s study or career.

Once the students have completed their research, which is
in effect their requirements gathering, they set about design-
ing their robot-tank. The design incorporates the strategy
that they will use for the different stages of the competi-
tion. Implementation is then undertaken; this requires the
students to write Java code for their robot-tank. Testing
requires the students to ensure that their robot-tank is ro-
bust, can compete against and defeat all robot-tanks given
as examples (usually by the lecturer). Finally, students are

5A technical report is used to guide students in their final
year projects (Software Reuse In Final Year Projects: A
Code of Practice, NUIM-CS-TR2003-12) and the guidelines
in this report are referred to — where appropriate — in all
their programming and software engineering modules.

also encouraged to test their tanks in competition against
a random selection of robot-tanks (both strong and weak)
taken from the Internet. These steps are applied iteratively,
resulting in a product that should meet its requirements.
This model of development called the “Incremental model”
combines elements of the linear sequential model (applied
repeatedly) with the iterative philosophy of prototyping[16].

5. ROBOCODE — THE COMPETITION
In the previous section we have shown how RoboCode —

through its practical application in the classroom — meets
two of Duch’s 5 characteristics for a good problem. In this
section we look at how the remaining 3 criteria — multi-
ple stages, open-endedness and the incorporation of course
objectives — are met by the RoboCode competition. We
then argue that the RoboCode competition also addresses
the additional criteria of needing to find a balance between
order and chaos in the learning process.

5.1 PBL should have multiple stages.
The RoboCode Competition naturally provides a problem

with multiple stages. The internal competition is run under
the same rules as the national competition. Each team must
submit their robot-tank, code and documentation prior to
the competition date. A panel of experts (usually a selec-
tion of academic staff from the participating institutions)
interviews teams about their submission. Any member of
the team can be called upon to answer a question. This al-
lows students the opportunity to explain their strategy and
defend their work, improving their oral presentation skills.

The competition consists of a league, a semi-final and a
final. Within the league section, each team’s robot-tank
is placed in a group. Points are awarded to robot-tanks
based on their performance during each one-on-one match:
2 points for a win, 1 point for a draw. Within each group,
every team plays against every other team.

The robot-tanks that accumulate the most points in each
group progress to the next level in the league. Here, teams
are allowed to refine their robot-tank (alter their code); they
can change the behaviour of their robot-tank between levels
in order to counter the other robot-tanks they are compet-
ing against. All teams will have seen every robot-tank in
action once the first level is complete; the decision to gam-
ble with the existing robot-tank or alter its behaviour can
be compared to decisions required by businesses competing
in the same market segment. The main decision is whether
to stay with what they know is “working” and hope that
the status quo is maintained or to implement a change and
gamble for better (or worse)?

5.2 Complexity and open-endedness
This decision-making also highlights Duch’s argument[7]

that problems should be complex enough that cooperation
from all members of the group will be necessary. A balanced,
well-jelled, team will have the skills to make the best call in
this situation. The problem is certainly open-ended, as no
two robot-tanks have the same behaviour and it is difficult
to predict how each opposing team will change, if at all, the
behaviour of its robot-tank in the following round.

The league continues in a knockout fashion until only four
teams remain and these go forward to the semi-final. Once
again, teams are allowed to refine their robot-tanks prior
to the semi-final. The semi-final consists of 3 one-on-one

matches. Each match runs back-to-back so no alterations to
the robot-tanks are allowed once the semi-final begins.

The finalists are allowed to refine their robot-tanks prior
to the final. However, in the final they not only compete
against the other finalist but also against five “pit robot-
tanks”6. The behaviour of the robot-tank that allowed it to
qualify for the final may not be the best behaviour in a mêlée
type situation. Once again the students face a complex and
open-ended problem. The objective for each robot-tank fi-
nalist is to survive longer in the mêlée than its opposing
robot-tank finalist.

5.3 Course content objectives
This problem not only explicitly incorporates content ob-

jectives of the course but also challenges students to reach
beyond them. The problem activates prior knowledge —
both the knowledge from previous experiences, which ev-
eryone brings to their learning, and the knowledge of pro-
gramming which the students have covered in semester 1,
which for some students is “fragile”. Through the course
of RobotCoding, this fragile knowledge becomes concrete so
that the learning becomes deep(er).

The students use and apply software engineering cogni-
tive tools: refinement, sub-classing, re-use and genericity[8].
The students employ the software development process of
requirements analysis, design, implementation, testing, re-
design, re-code, and re-test; and this is a critical part of a
software engineer’s education. The ability to document their
work — both in a technical and non-technical manner — is
a requirement not only for their academic life but also for
their work life; as is the skill to present, explain and defend
their work in a coherent manner. Strong learners can ex-
plain which strategies they used to solve a problem and why
they used them. The skill to work effectively in a team envi-
ronment is a requirement in today’s global economy. One of
the major advantages of this problem is the cohesiveness it
brings to the team, which increases the quality of its work.

5.4 Freedom: balancing order and chaos
Software engineering is all about going from what to how,

moving from abstract problems to concrete solutions. This
involves design steps: decisions that are made in order to
move a model away from an open (non-deterministic and
non-executable) description of requirements to a closed (de-
terministic and executable) description of the implementa-
tion. Software engineering (design) is difficult because it
cannot, in practice, be done prescriptively (otherwise we
would automatically generate solutions from problems); and
it cannot be done in a purely ad-hoc fashion (otherwise we
would not need software processes to manage the complex-
ity of the systems and behaviour being modelled). Software
engineering is a unique mix of science, engineering and art:
the best practitioners know that each new project (problem)
requires a different balance between the potential chaos of
innovation and the constraints imposed by order and struc-
ture.

The freedom to find the correct balance was an impor-
tant part of the RoboCode learning experience. In the 1st
year of our participation in the national competition, our

6These are usually contributed by academic staff and are
intended to provide very stiff competition for the students’
tanks so that their most realistic objective is to maximise
survival time rather than to actually defeat the pit robots!

winning team chose a very conservative approach to con-
structing their robot: they combined — in a reusable, pre-
scriptive manner — the behaviour of robots that they had
found on the Internet. They came 3rd in the national com-
petition. In the 2nd year, our winning team took a very
innovative, ambitious approach with little reuse of existing
models. They worked in an experimental, ad-hoc fashion
which suited the profile of the team members. They came
2nd in the national competition. We believe that each of
the teams benefited from having the freedom to choose how
they would work, within the constraints of the competition
rules. (We note also that the two finalists were teams made
up of 3 members — the maximum allowed.)

RoboCode also provides freedom to the lecturers to exper-
iment with the balance between order and chaos. It is very
easy to introduce new competition rules that constrain the
way in which the students can work, making the develop-
ment process much more prescriptive. It is also straightfor-
ward to weaken the rules so that students have much more
freedom to experiment.

6. CONCLUSIONS
Competition is an everyday occurrence in the real world

and effective problems in PBL emphasize this real world as-
pect. The RoboCode problem presented in this paper com-
bines elements of fun, programming, games, AI and compe-
tition. It encourages the fun element of creative ideas within
the constraints of the RoboCode environment with the chal-
lenges of refining these ideas into a workable solution. We
would argue that this problem transforms fragile knowledge
into a concrete transferable skill that can be applied in new
situations. Students develop skills for each stage of the soft-
ware development process: requirements analysis, design,
implementation, and testing; and they can think critically,
reflect on their work, conduct tradeoffs and make informed
decisions. Our experience shows us that in order for stu-
dents to gain the maximum benefit from this problem they
should have prior experience of working in a team environ-
ment. Within PBL the focus is shifted from teaching to
learning and this shift in conjunction with a good problem
(RoboCode) provides each student with the freedom to think
for themselves, activate their prior knowledge and acquire
new knowledge in an explorative and creative way.

7. REFERENCES
[1] T. Barrett. Who said learning couldn‘t be enjoyable,

playful and fun? – the voice of PBL students. In PBL
in Context — Bridging Work and Education, pages
159–175. Tampere University Press, 2005.

[2] J. Bierre and A. Phelps. The use of MUPPETS in an
introductory Java programming course. In SIGITE04.
ACM, October 2004.

[3] E. Bonakdarian and L. White. Robocode throughout
the curriculum. J. Comput. Small Coll.,
19(3):311–313, 2004.

[4] J. Bransford, A. Brown, and R. Cocking, editors. How
People Learn: Brain, Mind, Experience and School.
National Research Council, 2000. Committee on the
Development in the Science of Learning and
Committee on Learning Research and Educational
Practice, Commission on Behavioural and Social

Science Education, National Research Council,
Expanded ed.

[5] A. Chamillard and R. E. Swardl. Learning styles
across the curriculum. In ITiCSE 2005: Proceedings of
the 10th Annual SIGCSE Conference Innovation and
Technology in Computer Science Education, pages
241–245, New York, NY, USA, 2005. ACM Press.

[6] T. DeMarco and T. Lister. Peopleware (2nd ed.):
productive projects and teams. Dorset House
Publishing Co., Inc., New York, NY, USA, 1999.

[7] B. Duch. Writing Problems for Deeper Understanding,
pages 47–53. Stylus Publishing, Sterling, Virginia,
2001.

[8] J. P. Gibson and J. O’Kelly. Software engineering as a
model of understanding for learning and problem
solving. In ICER ’05: Proceedings of the 2005
international workshop on Computing education
research, pages 87–97, New York, NY, USA, 2005.
ACM Press.

[9] K. Hartness. Robocode: using games to teach artificial
intelligence. J. Comput. Small Coll., 19(4):287–291,
2004.

[10] W. S. Humphrey. PSP: A Self-Improvement Process
for Software Engineers. Pearson Education, Inc., NJ,
2005.

[11] T. Jenkins. A participative approach to teaching
programming. SIGCSE Bull., 30(3):125–129, 1998.

[12] J. OKelly. Designing a Hybrid PBL Course: A Case
Study of First Year Computer Science in NUI,
Maynooth, pages 43–53. CELT, NUI Galway, Ireland,
2005.

[13] J. OKelly and J. P. Gibson. PBL: Year one analysis —
interpretation and validation. In PBL In Context
Bridging work and Education, 2005.

[14] J. OKelly, R. Monahan, J. P. Gibson, and S. Brown.
Enhancing skills transfer through problem-based
learning. Report nuim-cs-tr-2005-13, Department of
Computer Science, National University of Ireland,
Maynooth., 2005.

[15] S. Papert. The Connected Family : Bridging the
Digital Generation Gap. Longstreet Press, October
1996.

[16] R. S. Pressman. Software Engineering: A
Practitioner’s Approach w/ E-Source on CD-ROM.
McGraw-Hill Science/Engineering/Math, November
2001.

[17] A. Robins, J. Rountree, and N. Rountree. Learning
and teaching programming: A review and discussion.
Computer Science Education, 13(2):137–172, 2003.

[18] C. Tien, S. Chu, and Y. Lin. Four phases to construct
problem-based learning instruction materials. In PBL
In Context Bridging work and Education, pages
117–133. Tampere University Press, 2005.

[19] G. Weinberg, editor. The Psychology of Computer
Programming. Dorset House Publishers, New York,
1998.

[20] L. E. Winslow. Programming pedagogy – a
psychological overview. SIGCSE Bull., 28(3):17–22,
September 1996.

