
Mass Production of Individual Feedback
David Heaney

DCU
Glasnevin

Dublin
+353 1 7008449

david.heaney@computinsg.dcu.ie

Charlie Daly
DCU

Glasnevin
Dublin

+353 1 7005572
cdaly@computing.dcu.ie

ABSTRACT
We describe a system to improve the quality of feedback provided
to an Introductory Programming course. The system uses web
technology to create a graphical tool that the tutors can use to
produce student-friendly feedback. It was used during the first
semester in Autumn 2002. Analysis of exam results show that
there was a statistically significant improvement and student
surveys showed that they enjoyed using the system.

Categories and Subject Descriptors
Classroom Management, Web-based Techniques (online system
to manage all students assignments and feedback)

General Terms
Management, Design, Experimentation, Human Factors.

Keywords
Education, Introductory Programming, web-based feedback.

1. INTRODUCTION
Computer Science courses tend to attract a diverse range of
students. It is imperative that each student receives motivation
and encouragement that is right for him or her. This is often
difficult to provide with large classes. We describe a system
which uses 2nd year students to tutor the 1st year students with the
aid of a web based feedback system. In the Fall Semester 2002
the system comfortably handled a class of 200 plus students, with
each student receiving complete and comprehensive personal
feedback on their assignments each week. The data shows that
there was a statistically significant improvement in the weaker
students’ grades, through use of this system.

We first address the problem of feedback and we examine
possible solutions. Then we outline our solution, describe the
implementation and analyse the performance, and hopefully
quantify and qualify the improvement for the students.

2. LARGE CLASSES, DIVERSE STUDENTS
AND POOR FEEDBACK
Computer programming is difficult to teach and learn. Studies in
Ireland [1] have shown that Computer Science has the highest
failure rate, giving a 26.9% non-completion rate for Computing
courses. In addition, international studies [2] show that many
students do not know how to program to an acceptable level.

Jenkins [3] points to student diversity, poor motivation and low
student expectation in an attempt to understand why programming
is so difficult to teach. It is not uncommon for a class taking their
first course on programming to have vastly different prior
experiences and pre-existing skills. They have different
expectations, motivations and hopes. This diversity is difficult to
handle in large class sizes, which are not unusual of toady’s
courses.

Keller points out that both motivation and expectation problems
can be addressed using appropriate feedback. In his ARCS Model
of Instruction [4], Keller identifies feedback as a means to
develop a student’s confidence (expectancy) and satisfaction
(motivation). Keller’s Motivational Delivery Checklist says that
a course which “provides feedback on performance promptly” and
which “makes statements giving recognition and credit to learners
as appropriate” will increase the value of the course. Phil Race
[6] argues that “the greater amount of feedback that learners
receive before the end of course assessment the greater their
opportunity to learn from such feedback”. In summary students
need plenty of quality feedback and ideally this feedback should
occur quickly.

In previous work [5], we had put a tutor system in place where the
2nd year students supervised and tutored the 1st year students’ lab
sessions. This was successful. But we found that the students just
did not receive adequate or timely feedback on their assignments
from their busy lecturers. We decided to extend the successful
tutor system and enable the lab tutors to provide feedback.

Poor motivation is not a new problem and efforts have been made
to solve it. Pair programming has been employed in various
colleges [7], [8], [9] and [10] in an effort to keep students
interested, and to manage large classes. Most of these studies
report a reduction in the demand for help from the tutors and/or
lecturers. They fail to conclusively show that pair programming
improves learning, but our hunch is that it does when used
correctly, and we have coupled the pair programming practice
with a personal feedback system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITICSE’04, June 28–30, 2004, Leeds, United Kingdom.
Copyright 2004 ACM 1-58113-836-9/04/0006…$5.00.

117

Figure 1. Screen shot of the feedback system in action.

2. MASS PRODUCTION OF INDIVIDUAL
FEEDBACK
Mass Production of Individual Feedback is simply a phrase
applied to our method of providing personal, quality, quick
feedback to each student on a weekly basis through use of our 2nd
year tutors and our online feedback system.
See figure 1 for a screenshot of the system.

2.1 The Tutors
Using competent 2nd year students chosen from the top of the
previous year’s class, we hoped to maintain a high level of
feedback for the students. They were given a training course to
help them provide clear and relevant comments.
Second year tutors provide numerous benefits. Firstly they have
mastered the material to a high level. Secondly, they are aware of
the difficulties introductory students have since they have recently
encountered these difficulties themselves. Thirdly, there are
many second years, they provide a perfectly scaleable solution to
manage large class sizes (if you take the top 10% of second years
you can always maintain a 1:10 ratio of tutors:students). Finally
they act as a role model for the students. This helps the students’
confidence, since if the tutors can have such knowledge of the
material after just one year then the student believes that they can
too. It also can help their motivation since students may also
aspire to tutor next year, for monetary reasons or personal

satisfaction. It all helps to motivate the students to become better
programmers.

2.2 The System
2.2.1 Overview
The system allows the lecturer assign tutors to students and to set
assignment details, including deadlines, specification files etc.
The lecturer can also monitor the feedback and grades that the
tutors are giving.
The system provides the tutors with the best tools for marking
computer programming assignments including a whiteboard [11],
with custom made tools, and predefined comments to catch
common programming errors and keyword highlighting for
clarity. Tutors can mark the assignments as soon as they are
submitted, and the feedback is available to review by the students
as soon as they are marked. Many places have online assignment
submission but this deals with online marking.
All assignments can be submitted and all feedback can be
reviewed wherever and whenever is convenient for the student via
a standard we browser.
It is important that the tutors can provide the right type of
feedback through the system. In programming things are not
always right or wrong. A feature of many courseware tools like
Blackboard [12] and WebCT [13] is exactly this sort of automated

118

feedback. Automatic feedback is very useful to a point and it is
very fast. On the other hand, our system puts the emphasis on
personalised student-friendly feedback that affords the tutor the
opportunity of providing encouragement at a more personal level,
thus increasing the student’s motivation and satisfaction.
With the system there is less emphasis on whether the code works
or not (a feature of automated marking) and more emphasis on
good programming practice (such as, when to use a for loop, as
opposed to a while loop, or drawing attention to good or bad
variable and method names etc.)

2.2.2 Technical Details
There are two main parts to the system. The server end keeps a
database of lecturers, tutors, students, their project files and the
associated feedback. The client end is a drawing tool that allows a
tutor to provide feedback on a Java assignment (more details
below). Both parts are written in Java. The server is written using
servlet filters (for authentication) and JSP pages to present
information to the users. The client end is a Java applet. This is an
adaptation of an open source whiteboard tool and an open source
Java code formatter.
Managing the users was relatively easy as DCU has an LDAP
server that stores usernames, passwords and details of all
university computer users. We were able to access the LDAP
server using a servlet filter that controlled access to the system.
Thus the need to manage new students, lost passwords etc. did not
arise.

3. IMPLEMENTATION
The system had its trial run in Semester 1 of 2002 in the
Introductory Programming module run here in DCU for first year
students. There was a range of students from different courses.
Although the majority were Computer Application students (138)
there were also Mathematical Science (19), Financial
Mathematics (36) and Computer Linguist (16) students. In total
there were 209 students registered on the system. We also picked
23 second years to act as tutors for the lab session. The lab
sessions were two 2-hour labs twice a week. The students
received an assessed assignment nearly every week, 8 in total.
During the second last Thursday of the semester a questionnaire
was handed out to the tutors. Every tutor returned the
questionnaire. The final week a student questionnaire was handed
out to the students who used the system and were present in the
lab that week. We got 128 responses back, which represents 61%
of the students registered on the system.

4. RESULTS
In analysing the impact of the system we considered the usage of
the system, the students opinion from the survey, the tutors
opinion and how the system enabled them to mark a substantial
number of students assignments quickly and easily. Finally we
considered the end of exam results and compared them to the
previous year where no such feedback system was employed.

4.1 Usage
We kept extensive logs of the tutors and students usage of the
system. We were pleased to see that the students appreciated the
easy access to the system. Log on sessions in the evenings and
during weekends proved that students were getting quicker access
to their feedback than they would be through traditional

assignment submission processes. In figure 2 you can see the
number of logins by day. Tuesdays and Thursday were the
busiest days as those were the days the labs were scheduled. The
graph does show that the system remained busy throughout the
week and to a lesser extent through the weekend.

Figure 2. Total login sessions across the semester by day

4.2 Student Reaction
Although we were using inexperienced 2nd year tutors, it appeared
that they were capable of providing helpful feedback to the
students. In the survey we had a positive response from the
students about the tutors’ feedback. Indeed 88% of students
agreed or strongly agreed that “the tutors were able to explain the
material well” and 97% of the students surveyed agreed or
strongly agreed that “the tutors knew the material very well”.
On the most part the students agreed that we had met our target of
making the feedback clear (53 out of the 128 responses strongly
agreed) relevant (36 strongly agreed) and timely (40 strongly
agreed). The students were even more enthusiastic about the
convenience of being able to log in from anywhere. Here 75
indicated that they strongly agreed that it was useful to be able to
submit code via a standard web browser.
They were also asked opinion questions on their experience with
the system. For the most part they were positive and helpful
comments on the system. Here are a few of the responses we got
when we asked for “the best feature about the feedback system”:

“It gave us a good idea about where we're going wrong in our
programming”

“It is a clear and precise way of seeing errors.”
“it made program very easy to read (with colours etc)”
“I could submit the code from anywhere at any time.”

“Easy to use - I was able to check my tutors feedback anytime
anywhere.”

“easy to use; easily accessed; quick correction of work”
“easy to use, a lot handier than having to go find your tutor”

“It was good to be able to see the advice directly linked to certain
parts of the code.”

“Getting a pat on the back. We all like the praise we can get, ya
know.”

“It was easy to use and feedback was returned quickly”

119

“You could view your programs as you wrote it, with comments
pointing to where you could have improved the program.”

“You could ask experts about problems ex people in the class who
had a higher skill of programming questions, and the answers

were good.”
They seemed to like the simplicity and that it was easy to use.
They liked the convenience of being able to submit from
anywhere and check their feedback too. They liked the
encouragement they got. It was not all good though. We asked
for “the worst thing about the feedback system” too. Here is what
they said:

“undecided, maybe could have had audio, sound”
“We often didnt get feedback”

“it takes a while to get the feedback”
“not enough info if something was incorrect”

“Nada, seems pretty cool to me.”
There had been some bugs and problems with the system that
surfaced slowly as the semester went on. So there were some
students who pointed this out to us here. Also some tutors were
not as good at giving feedback to their students. Some students
rarely got any feedback at all from the system unfortunately. But
the negative comments were far fewer than the positive ones.
We also asked for ways they thought might improve the feedback
applet. They said:

“There was maybe correct copies of code to actually compare
yourself.”

“Instant Messaging”
“scores were given on your assignment”

“Tutors themselves submitted a program to each student showing
the best and most effective way to do each assignment after you
had submitted your program with all the extra credits shown so

that students can learn from past mistakes.”
“People used it more and were more willing to give feedback”

“it worked more often”

4.3 Tutor Reaction
Using the system we were able to manage a class of over 200
students with the help of the 2nd year tutors. Each student
submitted an assignment weekly and had received feedback by
the end of the week. The simple well-designed interface meant
that it was easy for the tutors to manage the their group of
students.
From the questionnaire results, the tutors commented repeatedly
on this:

“was able to mark assignments very quickly”
“it was easy to write over the code and show exactly where errors

occurred”
The system handled 992 file submission (some assignments
required more than 1 source file and most students did the
assignments in pairs), and a total of 845 assignments marked by
the tutors.

4.4 Exam Results
To analyse the effectiveness of the system, we compared two
groups of students, one group had used the system and the other
group had not. We omitted students who were not in the
Computer Applications course and for whom we had no Leaving
Certificate data. The Leaving Certificate is the final exam Irish
students sit before they begin third level education. The amount
of points they get from the Leaving Certificate solely determines
which college courses they can take.
In our analysis of the exam results we focused our attention on the
students who got low points in their Leaving Certificate. The
Higher Education Authority [1] identifies these students as most
likely to fail to complete their course of study. A comparison
between these at risk students’ results in Fall 2002 with their
counterparts of the previous year shows a statistically significant
improvement.
Figure 3 shows the average marks for the students in the various
points range for 2001 (with no feedback system in place) and
2002 (using the system described in this paper). The numbers
above the bars represent the number of students in each category.
Notice the improvement for students with entry points of 350 to
370 points. In 2001 the mean was 38%, while in 2002 it was
48%.

Figure 3. Comparison of exam results for 2002 and 2001

grouped into groups of equal points
In particular for the low points students (350 to 370), the t-test for
equality of means produces a test statistic of t=–2.123. You
would expect to see a t value like this by random chance only 4
times in 100. So, there is a statistically significant improvement
in the at-risk low points group.

5. CONCLUSION
Feedback is an integral part of the learning process. Through our
personalised, fast, quality feedback we succeeded in increasing
student motivation and confidence. The system was very useful
in managing large volumes of student assignment submissions.
The exam results show that weaker students benefited most from

120

the system. This was perhaps because weaker students find it
discouraging when they struggle over problems that other students
find trivially easy. Our web-based feedback system was able to
provide individual attention in order to encourage the weaker
students to persevere with the task of learning how to program.
The students’ comments on the system were very pleasing. Their
comments are in agreement with what Keller [4] theorises.
Feedback increases students’ satisfaction and confidence. From
the questionnaires the most dissatisfied students were the ones
who were dissatisfied because their tutor had not given them
enough feedback. This proves that the students themselves realise
that it is important to get feedback.

6. FUTURE WORK
The system is in use again for the Fall Semester 2003. We have
added a facility to allow the tutors to run the assignments online
to aid them in the marking, plus some other significant
improvements to the system.
We added self and peer assessment. Phil Race [6] points to this as
a very useful method for improving learning.
Self-assessment aids the learning process and encourages students
to reflect on their own assignments.
While with peer-assessment the students benefit from correcting
other students assignments, they see other examples of how to do
the programming assignment and it gets them thinking about what
makes a good program. In the survey many of the students did
request that they could see examples of the code. As an added
bonus the system creates more feedback at no extra expense to the
college.
We are looking forward to seeing the students’ reaction to the
new improved system, and analysing any effects the peer and self
assessment had on the students learning.

7. REFERENCES
[1] Mark Morgan, Rita Flanagan and Thomas Kellaghan,

"Higher Education Report A Study of Non-Completion in

Undergraduate University Courses" published February
2001.

[2] McCracken, M et al. (2001), "An international multi-
institutional study of introductory programming courses"
Report by the ITiCSE 2001 Working Group on Assessment
of Programming Skills of First-year CS students.

[3] Tony Jenkins, John Davy, “Diversity and Motivation in
Introductory Programming”.

[4] Keller, J.M. & Keller, B.H. (1989). Motivational delivery
checklist. Florida State University.

[5] Reference omitted for the sake of anonymity

[6] Phil Race, “Never Mind the Teaching Feel the Learning”.
SEDA Paper 80, 1993.

[7] Charlie McDowell , Linda Werner , Heather Bullock , Julian
Fernald, "The effects of pair-programming on performance
in an introductory programming course" ACM SIGCSE
Bulletin , Proceedings of the 33rd SIGCSE February 2002.

[8] Laurie A. Williams, Robert R Kessler. “Experimenting with
Industries Pair-Programming Model in the Computer Science
Classroom”

[9] Jerzy Nawrocki, Adam Wojciechowski. “Experimental
Evaluation of Pair Programming.

[10] Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric
Wiebe, Kai Yang, Carol Miller, Suzanne Balik. “Improving
the CS1 Experience with Pair Programming”

[11] Merlin Hughes, “Draw the world: Create networked
whiteboards with Java 1.1”
http://www.javaworld.com/javaworld/jw-11-1997/jw-11-
step.html

[12] Blackboard Learning System, http://www.blackboard.com/

[13] WebCT, http://www.webct.com

121

