€Y Routledge

g Taylor &Francis Group

Computer Science Education

ISSN: 0899-3408 (Print) 1744-5175 (Online) Journal homepage: http://www.tandfonline.com/loi/ncse20

Predicting introductory programming
performance: A multi-institutional multivariate

study

Susan Bergin & Ronan Reilly

To cite this article: Susan Bergin & Ronan Reilly (2006) Predicting introductory programming
performance: A multi-institutional multivariate study, Computer Science Education, 16:4,
303-323, DOI: 10.1080/08993400600997096

To link to this article: http://dx.doi.org/10.1080/08993400600997096

@ Published online: 01 Dec 2006.

N
CJ/ Submit your article to this journal &

||I| Article views: 140

A
& View related articles '

@ Citing articles: 5 View citing articles &

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=ncse20

(Download by: [University College Dublin] Date: 11 September 2015, At: 03:4}

http://www.tandfonline.com/action/journalInformation?journalCode=ncse20
http://www.tandfonline.com/loi/ncse20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993400600997096
http://dx.doi.org/10.1080/08993400600997096
http://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/08993400600997096
http://www.tandfonline.com/doi/mlt/10.1080/08993400600997096
http://www.tandfonline.com/doi/citedby/10.1080/08993400600997096#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/08993400600997096#tabModule

Downloaded by [University College Dublin] at 03:45 11 September 2015

Computer Science Education g{ B?U£Led9§
Vol. 16, No. 4, December 2006, pp. 303—323)

Predicting Introductory Programming
Performance: A multi-institutional
multivariate study

Susan Bergin* and Ronan Reilly
Department of Computer Science, NUI Maynooth, Co. Kildare, ROP

A model for predicting student performance on introductory programming modules is presented.
The model uses attributes identified in a study carried out at four third-level institutions in the
Republic of Ireland. Four instruments were used to collect the data and over 25 attributes were
examined. A data reduction technique was applied and a logistic regression model using 10-fold
stratified cross validation was developed. The model used three attributes: Leaving Certificate
Mathematics result (final mathematics examination at second level), number of hours playing
computer games while taking the module and programming self-esteem. Prediction success was
significant with 80% of students correctly classified. The model also works well on a per-institution
level. A discussion on the implications of the model is provided and future work is outlined.

1. Introduction

Student retention on third-level Computer Science (CS) and Information Technol-
ogy (IT) courses is a significant problem. Students find computer programming
difficult and struggle to master the core concepts. Identifying struggling students can
be difficult as introductory programming modules tend to have a very high student to
lecturer ratio and thus lecturers do not know how well students are doing until after
the first assessment. Given the typically high number of students, marking the
assessments can take a considerable length of time. Even if the assessment is
indicative of likely overall performance on the module, it may be too late for students
to withdraw from the course or for instructors to intervene to prevent struggling
students from failing. This is a cause of great concern for computer science educators
and has led to a body of research in the area. Although many studies have interesting
results it can be hard to know how to apply the results to other educational settings
with different parameters, for example language being taught and assessment
structure. Furthermore, the factors examined are often dependent upon the students’

*Corresponding author. Department of Computer Science, NUI Maynooth, Maynooth, Co.
Kildare, ROI. E-mail: sbergin@cs.nuim.ie

ISSN 0899-3408 (print)/ISSN 1744-5175 (online)/06/040303-21 © 2006 Taylor & Francis
DOI: 10.1080/08993400600997096

Downloaded by [University College Dublin] at 03:45 11 September 2015

304 S. Bergin and R. Reilly

experience on the module and with the material and therefore it is difficult to know
how predictive the factors would be if measured at the commencement of the
module.

A model that could predict likely programming performance in the first few weeks
of a module would considerably help to alleviate this problem. To build such a model
would require (1) the identification of early predictors of performance on an
introductory programming module and (2) the appropriate implementation of a
scientifically sound, predictive statistical model.

This paper describes such a model. A study on early identifiable factors that
influence performance on an introductory programming module is presented and a
model using these factors is developed. The paper is structured as follows. First, a
literature review is provided, followed by a description of our study on early
identifiable factors. Then the procedures used to prepare the data for analysis are
outlined and subsequent analysis and results are presented. A discussion of the
findings is presented and a brief outline of an epilogue study confirming the main
findings is provided. The paper concludes with suggestions for future work.

2. Review of Literature

Predictors of performance on introductory programming modules studied to date can
be broadly classified into the following groups: previous academic and computer
experience with emphasis on exposure to mathematics and prior programming
experience; cognitive factors; and psychological factors with emphasis on perceived
comfort-level on the course. Studies within each of these categories are presented
next and a brief summary of some other interesting factors that do not fall into the
previous categories are also provided. Table 1 summarizes the predictors examined.
Finally, another factor, self-regulated learning, that has previously been found to
relate to performance in other academic domains is introduced and briefly discussed.

Previous academic experience and programming experience have often been cited as
predictors of programming success. Numerous studies, including Leeper and Silver
(1982), Honour-Werth (1986), Byrnes and Lyons (2001), Cantwell-Wilson and Shrock
(2001), Evans and Simkin (1989), and Bergin and Reilly (2005a), have found that
mathematical ability and exposure to mathematics courses are important predictors of
performance on introductory computer science modules. Similarly, Byrnes and Lyons
(2001) and Leeper and Silver (1982) found that performance in and experience of
science subjects is also important. Studies by Hagan and Markham (2000), Holden and
Weeden (2004), Evans and Simkin (1989), and Cantwell-Wilson and Shrock (2001)
have ascertained that prior programming experience and non-programming computer
experience are useful predictors of programming performance.

The role of cognitive factors in programming has also received research attention.
Austin (1987), Barker and Unger (1983), Gibbs (2000), Hostetler (1983), Kurtz
(1980), and Mayer et al. (1986) have investigated certain cognitive factors, including
cognitive style and abstract reasoning ability and provide useful insights into the role
of cognition in learning to program.

305

Predicting Introductory Programming Performance

(panuauo)

soueuopad Suruweigoid
s (10°>d “ZLG°0 =) 1[NSAT DUIAOS
DT (10" >7 ‘gcg 0 =4) 1NSAI sOneWPeW

(syuawugisse
AP99M 94,0¢ PUB UONBUIUEXD UILIM % (L)
S1USPNIS SANIUBWNY] IBIA 1SIY 10] SPOYIdN

(1002)

D] :10J PUNOJ SUONB[LIOD JUBOHYIUSIS [ed1807 pue SurweiSold, Uo INsaI [[BIAQ OT1 DISvVd SUOAT puB souwIAg
S1[NS3I UI J0UBLIBA 3 JO 9,09 I0] PIUNOIIL
$10108] 931 SuIsn [9pOW UOISSAIZAI
*A12AN03dsax 10°0>d 1960 =4 pue 10°0>¢
‘2160 =+ douewrrojrad Surwrweidord
M SuruIed[J0j AOBOLJO-J[9S puB UONBANOW Smpow Suruweidoid A101onposnur (95002)
JISULDUL :I0J PUNOJ SUONB[ILIOD 1UBOYIUSIS UB UO UONBUIWEXD A101BIOQR[A1 LG BAR[AqIoy pue uidiog
s1nsax dduewroyrad SurwuwrerSord ur
J0UBLIBA 311 JO 9,6/, JOJ JUNOJOR 01 J[qE SBMm
[9A] 1I0JWOD PUB 91028 sonewdIewW (D)
91BOYIIDY) SulABYT IOPUSs ‘Ompowt 3yl (uoneBUIWEXd [BUY 9,0/ PUB JUIWISSISSB
Jo Surpuelsiopun 13y Jo sy jo uondadiad SNONUNU0d 9%,()¢) 9sInod Surwwreidord (86002)
sludpnis & uodn paseq ‘Qnpour uoIssaIgar y £31010NpOIIUI UB UO YIBW J[NPOW [[BIAQ (8 eAB[Aoy pue uidg
9peI3 9SINOD [BUY Ul 9OUBLIBA U] JO
%21 10J PAIUNOIIL [AJ] (J] UO PIseq [opour sa8en3ue|
UOISSIZaI ¥ "SIUdpNIS pasueApe paidipaid Surwrwieidoad JudIdIp oml Suruied] (g861)
Amgssaoons 1531 (1) 1udwdO[oAdp [BNIOJ[[AIUT SUOIO3S SSB[O G UI S1Udpnis Jo dpeid [eul,] ¢G¢ D pue ++D 198u) pue JoyIeg
SI[NS3I UT 90UBLIBA
Y1 JO %19 I0J 1UNOJOB 01 J[qB SBM [OAJ[
P9119A0IIXd PUB J[A1S ONATBUEB/PILISAOIIUL
UB JO SIINSBIW PUB AN[IQE SONBUIIBUI
PIssIssB-J[as ‘SoNI[Iqe UONBULIOJUL
[BIoUd3 pue AIR[NQEBO0A ‘SANI[IqE SUIUOSBII
OSIWYILIOS[B PUB dAnRINUBND QUIWIAIIYDL douewiopad qel pue Sunum weidord
Ausodwod [ooyds Y3y jJo pasodwod [opouwr ‘Burpeas weiSoid uo paseq 2100s Arsodwo) 9/ [eosed (1L861) unsny
s10101pa1d 1ueoyIUSIg UOLIdILID J0UIJY u a8en3due] SIOYDIBISIY

souewroyrdd SururwrerSoxd SouUINPUI 1BYI $I010B] UO YOIBdSdI SNOIAdLJ '[e,

GTOZ Jlequisides TT Gi:€0 e [ungnaafe|j0D Aisieaiun] Aq pepeojumoq

S. Bergin and R. Reilly

306

(ponuruoo)

UONBUIWEXS [BUY Y1 1d90X3 SIUSWSSISSE
[[e uo ddudLradxs Surwweidoad rorud
INOYIIM PUB IIM SIUIPNIS JO ddUBULIONd

U1 U99M19Q PUNOJ DUIPIP 1UBOYIUSIS

S9I00S UI 9DUBLIBA 91 JO 9, ¢F JOJ PIIUNOIIE
91008 ATEPU0D3S MBI PUE SI[NPOW ISI0
uo d8e1aAe ‘1opuad ‘Furweidord 103 RISIP

(39p10 ur) Jo pasodwod ‘epowr UOISSAITAI

(51591 I9I19 UO) JUdWAAIOR Surwrweidord
ddUdnNyul 01 PUNoOj 10U SeM J[A1S dANIUS0D

JUSTUOIIAUS SUTUIBI[ISIANONISUOD B UL\

9[QBLIBA SWIOJINO [OBS U0
S0UBLIBA U1 JO 9,¢T ISOW JB IOJ Pajunodde
Suropour uo1ssaIZoy (sowresd 11ndwod

10 09p1a Surde[d sinoy ‘eoudrradxa

DISVY Iouid €$38In0d SONBWIYIBW [00YDS
431y Jo roquinu ‘9[dwexa I0J) punoj [qeriea

JwooIno uodn 1uapuadap s10101paid snoLeA

109J32 2ansod B pey SSB[d

Surmuwreidoad (o} 1011d B JO 90UALIdAXD
S[IyM JpeIS U0 109JJ9 2ANE3U B pey

3s1nod a1 01 Joud sawes yandwod Suikerd
sInoy Jo I9quInu JU3 1BYI PIIBdIpUl SISA[euUR
AIBpU029g *SINSAT ULIA)-PIU UT JOUBLIBA 1
JO 9% % 10J PAIUNOIIB YON| 01 JIN[IBJ/SSIOINS
JO uonnquIie pue punoiSyoeq SONBUIAIBUI

[9A]-1I0JWIOD SUISn [9POW UOISSAISAI

(9%0F UonNBUIWIBXY PUB % 0¢
SIUWUSISSE 0M] 0/ ()¢ S1SA1 0M1) d3139p
Sunndwod d1enpeidiopun Ug Ul JSINOD

Surwre13oad 1s1 B UO SI[QBLIBA SUWIOIINO JAL]

(syuaurugisse o;,0f pue
UONBUIWIEXD 9%,()9) 99139p paie[aI-1o1ndwiod
B Ul PI[[OIUS SIUSPNIS 10J 3sInod s1doouod

Surrwesgoad £1010nponur ue uo IMNSAY

Surpod uo sem 1s31
puodas a3 pue SuruSIsap Uo Sem 1S9 ISIY
QUL ‘s1uapnis 20U3Ids 1Indwod Jo 9sInod

Suruwei8o1d 18I B UO S1831 JUSWISASIYOE OM T,

(uoneurwexa [euly
B PUB SWEXd ULIDI-PIW ¢ ‘SWEXd DISVY
T 93008 Jr0MowoY) sse[d a1ndurod ssauisng

[9A9[-ATIUS UE UO SI[QEBLIBA SUIODINO XIS

sjuapnis
SuruweiSoad 1oindwos Aroonponur
10J 20ouam0g Joindwo) 01 uononponuJ

202SD, U0 9peIS 9SIN0D WLIdI-PI

eAe[

OISvd

OISvd

++0

(0002)
Wwe ey pue ueSepy

(0002)
oWy pue pjoon)

(0002) sqqID

(6861)
upWwIS pue sueaq

(1002) ¥o01ys
pue uos[I\-[[2MmIue)

s10101paad JueOyIUSIS

UOLIOIO OUIJY

o8en3ue]

SIOYDIBISIY

GTOZ Jlequisides TT Gi:€0 e [ungnaafe|j0D Aisieaiun] Aq pepeojumoq

(ponunuory) *1 91qe],

307

Predicting Introductory Programming Performance

(panuauoo)

Oy SIUSPNIS PUE ISINOD Y1 WIOIJ MIIPIIM
Oy SIUSPNIS JO PUNOISYOR] SONBWIYIBW

8/, WN[NOLIINYD)
ur [SD U0 Paseq 9sInod ,20uadg raindwo))

U1 U2MIdQ SAOUIIPIP 1UBOYIUSIS PUNO] 0] UONONPONU], UB UO UONBUIIEXD [BUL] oiseq (€861) ‘IB 19 BUI[BAUOY]
sdnoi3 opninde mo[pue y3iq our (9, LL)
S1UOpNIS 6/ JO 19 PIYISSB[O A[I0dII0D
‘(ren Ayonj-o8-Addey 10 UONBUTWEXD
I9qos) 10108} Alfeuosiad € pue punoisyoeq [euly INOY-93IY1 B PUB SUOMBUIUIBXD
SONBWAYIBW ‘(YD) 95BIdAY 1UIOJ dpBID) Inoy-auo oml ‘syudwrudisse Juruweisord
‘(gvdD) Aroneg spmindy JowweiSorJ UO $39100S JO SISISUOD dpeIS YT, * ssauisng
191ndwo) Yyl Uo 2I00s FUIUOSBAI 01 uonedrddy 1oy [, pue soinduwo)
pue SuruweiSerp Suisn ‘Ppour UoIssaIFaI Y 0] UoNONPOJU], U UO IpeI3 [[BIDAQ UBILIO (¢861) IpaAsoy
douewiopdd qum (10°>d LI 0=4) %02 193(oad Suruureidoad
91418 2anmuS00 pue (G0 >d ‘e 0=4) B pUe 9,01 $9zzmb ‘o[0f SUOTBUIIEXD ‘0; (¢
1uowrdoraasp TenioafRIur uenaderd (1°>d SIUOWUSISSE MIOMIWOY UO SAI0DS pIpn[out
‘€0Z°0=4) qol awn-11ed e 18 Jupjiom ape1n) (wnnoin) (WDV) Arsurgoe|y
snoy ‘(¢Q°>d ‘¢eg 0 =4) SonewayIBWw Sunndwoy) 10J UONBIOOSSY Y1 UL SSB[O
[ooyos Y31y :10J pUNOj SUOMB[AIIOD JUBOYIUSIS 1SIY) [90Uag 1aindwo)), uo apeid 1uapnig [eoseg (9861) Y113 \-INOUOH
$98IN0d
191e[Ul Jou Inqg douanbas Surwrweidoid
B Ul 9SINO0D 18I 33 Ul 95eIUBAPE UB douanbas Surwei3ol 01 Uononponu], #002)
st (98enSue[Jo 1USpUdIPUI) JOUSLIDAXD JOLIJ UB JO ISINOD ISIY S UO SWEBXD SSB[O-UL 931 T, BAR[UdPIdA\ pue uspioyq
(600> BCSy =)
sse[o o ssed 01 uone1dadxd IR UO
OUdLIddxd Joud INOYUM puB IIM SIUIPNIS
JO oA D2UIPYUOD Y1 UIMIG IDUIIJIP
1uedyIusIs B punoj os[e A3y I, ‘douruniojrod
A1 1oY3Iy 9y “9sInod Iy Sunyel o1 roud
Mmowy Judpnis & sagenSue] Suruweidoid
QI0WI U3 1BYI PIIBOIPUL SISA[BUR IOURIN,]
$10101pa1d 1uBOYIUSIG UOLISILID 0UIJY 98en3ue] SISYDIBISIY

(ponunuoD) *1 S1qeL,

GTOZ Jlequisides TT Gi:€0 e [ungnaafe|j0D Aisieaiun] Aq pepeojumoq

S. Bergin and R. Reilly

308

(panuauoo)

paie[aa A[oane3ou

9Q 01 puUNoOJ SeM 3SINOD Y] U0 JunfIom Juads
Jwmn 1nqg douewioyrad 01 pareRl Apanisod
9Q 01 PUNOJ 3I9M SI[CELIBA OM] ISI YT,
*90UBLIBA JU] JO 9, [JOJ PIIUNOIIE ISINOD
1 uo Jun{rom 1uads W PUB Y J5) 93900

‘ATIqe PaAIddIad Sursn [opour uoIssaIIAY

SUONOIIP SUIMO][0F :[[IYs UoIsuAy2Iduod
ampadoid e pue uonnjos wayqord

piom pue uone[suen woa[qoid piom :S[IYs
uone[suen waqoid oml Sursn sdoueLIRA

91 JO 9,0G JOJ PIUNOJJE [dPOW UOISSIISNY

9I00S SonewWAleW]S pue
[8QI9A 1YS I10J pUNoj SUONB[ALIOD 1s38U0ong
“Yuel [00U2s Y31y pue 21008 SONBUWAIBW
LVS Pue [eqida (LYS) 159], IUWISSISSY
onse[oydg ‘padrdwod situn a8endug]
uS1910J pUB AOUIDS ‘sonBUWAYIRW ‘YSISug
[ooyos Y31y Jo roquunu 3uisn d0UBLIBA

31 JO 9,07 JOJ PIIUNOIIE [POW UOISSAISOY

SopeIS ur 90UBLIBA 1 JO %¢O
JOJ pa1unodoe ‘(dourwiiojrod Surpuelsino
pue 100d A[eoyroads) ddoururIordd jo

10101pa1d Suoais B SI SUIUOSBAI [BULIO] JO [9AY]

9sIN0d
I Sunfel 210J9q PUNOISH OB [BONBUWIAYIBUI
dJow ApUedYIUSIS pey 3sInod Ayl paiddurod
oyMm SIUIPNIG "9sIN0d Y3 parodwod

asnon)

Surrwei8oi1J £101oNponu] UB UO PRI

2JOJS uoneuIwex?9 dIsegq

asImoD

Suruuwrei301J A1010NpoOJU] UB UO JpBID)

%eeT

UONBUIWEXD [BUY PUB 9,/] WLI-pIux
€0,01 s9zzmb ‘o cc sweidord Uo $3100s

JO pasoduwrod apeir) ‘siofew-uou pue siofewr
0UaI0s 19INdWOD IO ISIN0D JurnuweI3orJ

01 UONONPONU], Ut UO dpeIs [eur]

UBILION

oIseq

paygroads 10N

UBIIION

(SL6T) PaIsmaN

(9861) 'Te 10 1Ae

(¢861) 1oA11S PuE 19do3T

(0861) Zany]

s10101pa1d 1uBdYIUSIS

UOLIDILIO 0UQIJY

J8en3due]

SISUDIBISIYY

(ponuauoD) *1 91qe1,

GTOZ Jlequisides TT Gi:€0 e [ungnaafe|j0D Aisieaiun] Aq pepeojumoq

309

Predicting Introductory Programming Performance

AKoeorge-J19s-a1d Jo 10301paid Suoais e st
OUALIddXd SNOIAJIJ "9PeiS [BUL Ul 90UBLIBA
Y1 JO 9%, 0¢ I0J PIIUNOIOE UONBZIUBSIO
98pa[moy] pue AOBOLJI-J[OS JO SAINSBIWT
qum Suofe doudLradxd Surwrweidord

9s1n0d urwweisoxd

pue 101ndwod snoradid Jo aInsedw - A1010NPONUL UB UO SIO(BW-UOU JO 9peiS [eul{ (Z1 ++D (6002) Yo2quapary\
S93BIdAR 9SINOD (9%06) wex?d pue (o,0f) 98e12a® Qe[“(%01)
Ul 9DUBLIBA 31 JO %,6°CS I0J PIIUNOIIE 91008 $9zZIb pue YI0MIWOY JO 35BIdAB PIIYSIom
SONBWAIBW S PUB [9AJ[-1I0JUIOD 9Fesn UO Paseq 9peID) IsIN0D ISIY-5193(qO
ge[1u2013d Jo S0[& Sursn [opow UoIssAISAI Y oUD-uJIsop [eorydeid € uo 9peis IsIN0D) 66F eag[(6002) BIMIUIA
Suruweidoad 10y 1uerrodwir st
AUMIBW [BONBWAYIBW JO WLIOJ JWOS ‘sny,
*SONBUIAIBW 1I0SIP APNIS OUYM SIUIPNIS SB
[[M SB 1SBI[1B Op SN[No[Bd Apnis oym siudopnig 3sinod Surwweidold B IISD UO 0UBULIONSJ (091 eaB[(2007) uras
"UOTIBUTUWIBXD
[BUl 9,0 PUB UONBUIWIEBXD I91SIWIIS-PIUT
9sIN0d %072 ‘stuowrudisse Surwrweidord Apoam-1q
9Y1 U0 193 01 Pa103dxd 1USPpNIS B SpeI3 %0¢ JO pasodwod sem YIBW Y], "9SINOD
91 SeM $$3001S JO I0IBDIPUI 1833U0MIS I T, Suruweidord 1894 11 B UO YIBW [BUL] ZL¥ eAR[(2002) ‘T8 19 d2munoy
9peI3 9sIN0d [BUY Ul
90UuBLIBA U1 JO 9;,0¢ I0J SIUNOIIE J0UIIAXD
Jondwos pue Surwweidord snoaid
pue A2BOIJO-J[3S ‘[OpOW [BIUSW ‘AOBOUJO-J[9S
uayiSuans pue douewroyrad Surwureidord sJ10(BW-UOU pUE SIOfBUW §7) JOJ ISINOD #002)
109y3€ A[10311p 01 punoj sEpow [eludw Juopnlg Surwweidold A101onponul Ue UO dpeIS [BUL] G/ ++D ‘T8 10 weSurewey
s10301pa1d JueOyIUSIS UOLIdILID J0UAIJY u o8enSue] SIAUOIBISY

(ponuuoD) *1 S1qe,

GTOZ Jlequisides TT Gi:€0 e [ungnaafe|j0D Aisieaiun] Aq pepeojumoq

Downloaded by [University College Dublin] at 03:45 11 September 2015

310 8. Bergin and R. Reilly

In recent studies researchers have examined various psychological factors including
students’ perceived comfort-level when learning to program. Cantwell-Wilson and
Shrock (2001) in a recent longitudinal study found that the most important predictor
of students’ performance on an introductory computer science course was comfort
level, determined by the degree of anxiety a student felt about the course. Goold and
Rimmer (2000) identified that ‘dislike of programming’ influences performance on an
introductory programming course. Ramalingam et al. (2004) and Wiedenbeck (2005)
identified a positive relationship between students’ mental models of programming
and self-efficacy for programming and performance and suggested that knowledge
organization directly affected success and strengthened post-efficacy. In a recent study
by Bergin and Reilly (2005a), it was found that a student’s perception of his or her
understanding of the module had the strongest correlation with programming
performance. In addition, Rountree et al. (2002) found that the grade a student
expected to achieve in an introductory module was the most important indicator of
performance. Ventura (2005) examined predictors of a graphical design-centric
objects-first Java course and found that student effort (as measured by the number of
hours spent using the labs) and comfort level were the strongest (positive) predictors
of success. Newsted (1975) in a study of introductory Fortran, students found that two
of the most important predictors of performance were perceived ability and time spent
working on the course and working with other students. While perceived ability was
found to be positively related to performance, the number of hours spent working on
the course was negatively related to performance.

The previous sections have outlined the main body of research on factors that
influence introductory programming success. Other factors have also been
considered, albeit often in one-off studies that do not fall into the previous categories.
In particular, two factors have been investigated in several studies and have been
found to relate to programming performance. The factors are (1) the number of
hours a student spends playing computer games and (2) the number of hours spent
working at a part-time job. Cantwell-Wilson and Shrock (2001) found that the
number of hours students played computer games was negatively related to
performance on an introductory computer science course. Similarly, Evans and
Simkin (1989) found the number of hours students spent playing electronic games
(both video and computer games were studied) had a negative relationship with
performance on an introductory Basic course. They also found that the number of
hours a student spent working at a part-time job negatively relates to performance.
Honour-Werth (1986) found a significant correlation between hours working at a
part-time job, r=0.203, p<.l, and performance on an introductory computer
science course using Pascal.

Although numerous studies on factors that influence programming performance
have been carried out, further predictors are still required. Recently, self-regulated
learning (SRL) has become an important topic in education and psychology.
Zimmerman (1986) defines SRL as the degree to which learners are metacognitively,
motivationally and behaviourally active participants in their own academic learning.
Furthermore, Pintrich (1990), and Zimmerman and Martinez-Pons (1990) advocate

Downloaded by [University College Dublin] at 03:45 11 September 2015

Predicting Introductory Programming Performance 311

that a complete model of SRL should incorporate cognitive and metacognitive
strategies, referred to as a ‘skill’ component, and motivational components, referred
to as ‘will’ components.

A considerable number of studies, including Pajares et al. (2000), Pokay and
Blumenfeld (1990), Pintrich (1990) and Zimmerman and Martinez-Pons (1990),
have consistently found a significant positive correlation between academic
achievement and self-regulated learning among elementary, high school, and college
students. With regard to programming performance, a recent study by Bergin and
Reilly (2005¢) found that students who perform well in programming use more
meta-cognitive and resource management strategies than lower performing students.
Furthermore, high levels of intrinsic motivation and task value are also associated
with performing well in programming. A regression model based on cognitive,
metacognitive and resource management strategies was able to account for 45% of
the variance in student results.

While a considerable amount of research has been carried out on factors that affect
programming performance, our interest is on factors that can be determined early in
the academic year. Given this, a study to determine early identifiable factors that
influence programming performance was conducted. The study builds upon the
findings of previous studies and further investigates the usefulness of SRL as a
predictor of performance.

3. Research Design

This section documents the methodology used in this study. A description of the
participants, the instruments and the a prior: procedures carried out on the data is
provided.

3.1. Parucipants

The study was carried out at four third-level institutions (post-high school) in the
Repubilic of Ireland in the academic year 2004 —2005. In total, 123 students enrolled
in a first-year introductory programming module voluntarily participated in this
study. The sample was composed of 77.5% male students and 22.5% female
students. Ninety-one percent of the sample had just completed second-level
education, while 9% were mature students. Eighty-five percent of the sample had
completed their second-level education in the Republic of Ireland while 15% had
completed their second-level education abroad.

The four institutions involved in the study are referred to in this paper as Institute
A, Institute B, Institute C and Institute D. The institutes were quite different in that
one was a university, two were institutes of technology and one was a college of
further education. Typically, entry requirements for Institute A would be higher than
all the other institutes, while requirements for Institute B and C would be similar and
higher than those of Institute D. The overall aim of each module was to provide
students with introductory programming skills and the contents of each module were

Downloaded by [University College Dublin] at 03:45 11 September 2015

312 8. Bergin and R. Reilly

highly similar. Students in Ireland do not study programming for national
examination in secondary school (i.e. high school). An outline of the assessment
structure for each module and a content overview is provided in Table 2. The
measure of performance reported upon in this paper is the overall module mark.

At institutes B, C, and D, 85%, 70%, and 95% of the total student population
agreed to participate respectively, while at Institute A 42% agreed to participate.
Statistical tests were carried out to determine sample representativeness and
are discussed in Section 3.3. Participants were provided with an information
sheet about the research and signed a consent form agreeing to participate.
Permission for the research activities was also granted by each of the participating
institutions.

3.2. Instruments

Four instruments were used to collect data: a background questionnaire, a program-
ming self-esteem questionnaire, a self-efficacy questionnaire and a motivation and
learning strategies questionnaire. Data were collected in two study administrations. In
the first administration all surveys (background questionnaire, Programming Self-
esteem questionnaire, and the shortened Computer Programming Self-efficacy scale),
except the Motivated Strategies for Learning Questionnaire (MSLQ), were admini-
stered. The first administration was carried out early in the programming module

Table 2. Module Overview

Institute Language Concepts covered* Assessment structure
Institute A Java Variable types, selection 30% continuous assessment, 70%
statements, iteration, recursion, final examination

arrays, methods, sorting,
searching, classes and objects

Institute B Java Variable types, selection 50% continuous assessment, 50%
statements, iteration, methods, final examination
classes and objects,
introduction to applets

Institute C Pascal Variable types, selection 40% continuous assessment, 20%
statements, iteration, arrays, practical examination, 40%
searching, sorting, linked lists final examination

and pointers

Institute D VB Variable types, selection, 100% project
iteration, arrays, methods,
classes and objects

Institute D Java Variable types, selection, 2 x 30% assignments, 40%
iteration, arrays, methods, theory examination
classes and objects

*Not in order.

Downloaded by [University College Dublin] at 03:45 11 September 2015

Predicting Introductory Programming Performance 313

(when the students had completed very early programming concepts— typically
variable types, selection statements and sometimes iteration) while the second
administration was completed when they were on average one-third of the way through
the material (typically around week 8 of a 24-week module). It was the intention that
both administrations would be completed closer together but this was not possible due
to timetabling and other constraints. The total time to complete all of the instruments
varied between one hour and one hour 15 minutes at the participating institutions. A
brief description of each of the instruments is provided next.

The background questionnaire collected data on a number of items including
previous academic information, for example Leaving Certificate (LC) mathematics
grade and highest L.C science grade; prior programming and non-programming
computer experience; comfort level on the module, and several miscellaneous items,
including, number of hours playing games before and during the module, likely
number of hours spent studying for the module and number of hours per week
working at a (part-time) job. The questions on comfort level were based on a set of
questions used in a study by Cantwell-Wilson and Shrock (2001). The questions
examined a student’s perception of his or her level of understanding compared to the
rest of the class, his or her ease at asking and answering programming questions, his
or her general understanding of programming concepts and his or her ability to
design and complete assignments. The questions are referred to as ‘Cantwell-Wilson
and Shrock (2001) comfort-level questions’ in this paper.

The Rosenberg Self-esteem (RSE) questionnaire (Rosenberg (1965)) was adapted
to apply to programming self-esteem. The RSE scale is perhaps the most widely used
self-esteem measure in social science research. The scale consists of ten questions and
has been shown to have generally high inter-item reliability. Each of the questions
were re-worded to relate to programming self-esteem and not to self-esteem directly.
For example, the first question was changed from ‘On the whole, I am satisfied with
myself’ to ‘On the whole, I am satisfied with my programming progress’. In this paper
the modified RSE questionnaire is referred to as the Programming Self-esteem
questionnaire.

The Computer Programming Self-efficacy scale was designed by Ramalingham
and Wiedenbeck (1998) and consists of 33 items which ask students to judge their
capabilities in a wide range of programming tasks and situations. As this instrument
was administered when students had very limited experience of the module material,
a shortened version of this scale using only seven questions was used.

In this study we used the model of self-regulated learning developed by Pintrich
and his colleagues, as outlined in Pintrich (1991a). This model stresses the learners’
use of cognitive strategies and self-regulatory strategies, self-efficacy beliefs
(individuals’ judgements of their capabilities to perform a task), task value beliefs
(the importance of, interest in and value associated with a task) and goal orientation
(intrinsic and extrinsic goal orientation), (further details provided in Pintrich (1999)).
The MSLQ (Pintrich (1991b)), a self-report instrument designed to measure
students’ motivation and self-regulated learning in classroom contexts, was used to
measure this model. The MSLQ is composed of two sections: a motivation section

Downloaded by [University College Dublin] at 03:45 11 September 2015

314 S. Bergin and R. Reilly

and a learning strategies section. T'o examine components of SRL the following scales
were employed:

o Goal orientation strategies: intrinsic goal orientation scale and extrinsic goal
orientation scale.

e Task-value scale.

o Cognitive strategies: rehearsal strategies scale, elaboration strategies scale and
organization strategies scale.

® Meta-cognitive strategies: planning, monitoring and regulating strategies scale.

e Seclf-efficacy for learning and performance scale.

3.3. Data Pre-processing

While an in-depth discussion on data pre-processing carried out in this study is not
appropriate in this paper, it is important to note that a number of a priori procedures
were implemented to prepare the data for analysis. The procedures included (1) data
screening, (2) testing the representativeness of the sample, (3) tests of unidimension-
ality, (4) dimensionality reduction and (5) tests to ensure the underlying assumptions
of the statistical technique of choice, logistic regression, are satisfied. A detailed
description of pre-processing can be found in Bergin and Reilly (2006). A few points
from this process are worth briefly noting.

Data screening required the examination of encoded data to ensure that it was free
of coding errors. Maximum and minimum frequency values were inspected to check
that no out-of-bounds entries existed. As a more rigorous measure, each encoded
item was inspected along with totals, by an independent witness and the author, to
ensure that all data have been satisfactorily entered and computed.

An a prior: analysis was carried out to verify no significant differences that existed
between the mean overall module results of the students who participated in the study
and the students who did not participate in the study. A t-test confirmed that no
significant differences existed between the mean results of students who participated
in the first administration of the study and the relevant student population at each
institute. However, statistical differences were found between the students who
participated in the motivation section (2(67)=6.451, p=0.001) and the learning
strategies section (z(56) =7.1, p=0.001) of the MSLQ at institute A and this will
have to be taken into account in the analysis. The cause of this statistical difference
was a considerably reduced sample size on the second administration at institute A.
This finding indicates that results involving the MSLQ may not be generalizable. To
alleviate this problem, two separate investigations were carried out, the first using data
gathered in the first administration and the second on the data gathered in both
administrations. Interpretation of the second investigation will need to take into
account the reduced sample size and the lack of sample representativeness.

Where multiple indicator variables were used to measure a construct, tests of
unidimensionality were performed. Cronbach’s alphas for each of the MSLQ sub-
scales and the subsequent values calculated in this study are given in Table 3. In each

Downloaded by [University College Dublin] at 03:45 11 September 2015

Predicting Introductory Programming Performance 315

Table 3. Reliability analysis using Cronbach alpha measure for MSLQ scales as given by Pintrich
et al. and as found in this study

Scale Pintrich (1991b) Study values
Intrinsic goal orientation scale .74 .75
Extrinsic goal orientation scale .62 .56
Task value scale .90 .85
Self-efficacy for learning and performance .93 .95
Rehearsal scale .69 .73
Elaboration scale .76 .58
Organization scale .64 .63
Planning, monitoring and regulating scale .79 .83

instance, the alpha values were found to be high. Test of reliability for the Cantwell —
Wilson and Shrock comfort-level questions was 0.80 and for the shortened Computer
Programming Self-efficacy scale was 0.95. Typically, Cronbach’s alphas for the
Rosenberg Self-esteem scale are in the range of 0.82 to 0.88, (Rosenberg (1965)) and
for the modified Programming Self-esteem scale used in this study the alpha value
was 0.91.

Principal components analysis (PCA) was performed on each of the multiple-item-
based instruments and components that satisfied the Kaiser criterion (all components
with eigenvalues greater than 1.0) were retained for future modelling. This resulted in
one component for programming self-esteem, one component for self-efficacy and
three components for the comfort-level questions.

The classification technique used was logistic regression. This technique makes no
assumptions about the distributions of predictor variables, that is the predictors do
not need to be normally distributed, linearly related or of equal variance within each
group and can be a mix of continuous, discrete and dichotomous variables. The
model produced by logistic regression is nonlinear and is denoted by

ebo +b,;X;

Pi:1+ebo+biXi- (1)

Like most statistical techniques, logistic regression does make some assumptions. A
considerable number of procedures was put in place to ensure that the underlying
assumptions were satisfied, including removal of outliers, procedures to reduce the
likelihood of overfitting the data, and tests to ensure the absence of multicollinearity.

4. Results

Two investigations were carried out. In the first investigation all the factors from the
first administration of the study were included, while in the second investigation all of
the factors from both administrations were considered. In total, over 40 models were

Downloaded by [University College Dublin] at 03:45 11 September 2015

316 8. Bergin and R. Reilly

developed with various degrees of freedom. All models were generated using 10-fold
stratified cross-validation. With this procedure, data are randomly split into ten parts,
with each part representing the same proportion of each class. Each part is held out in
turn and the learning scheme is trained on the remaining nine parts, then the error
rate is calculated on the holdout set. In total the procedure is executed ten times on
different training sets and the results are averaged over all of the testing datasets.

4.1. Investigation 1

Numerous logistic regression models were developed using the variables from the first
administration of the study. The most significant predictor set that emerged (Predictor
Set 1) had three predictor variables, I.C mathematics score LCMATHEMATICS),
number of hours spent playing games while taking the module (WHILEGAMES) and
student values from PCA on the Programming Self-esteem scale (PROGSELFEST)
(calculated as the sum of the first component score times the standard student
response to each item in the scale). From a total of 123 cases, 102 were included in the
model. The percentage of students accurately classified was significant at 80%.
LCMATHEMATICS and PROGSELFEST were found to have a positive relation-
ship with performance, while WHILEGAMES was found to have a negative effect (the
more hours a student spent playing games the lower their performance on the module
and vice versa). Table 4 outlines the high performance of this model. Although a
considerable number of other models was developed, no superior predictor set was
found. A second predictor set (Predictor Set 2) did emerge with marginally higher
prediction accuracy 82% but with a reduced sample size »=82. The predictor set
included the three predictor variables from the first model and the number of hours
students were likely to spend studying module material per week (LIKELYHOURS)
and measures of performance are provided in Table 4.

In logistic regression, probabilities are used to determine to which class an instance
(student) belongs. In general, the cut-off value is 0.5. Thus, we are not restricted
to treating our outcome as dichotomous (weak or strong) but can also classify
performance using the classification probabilities. This is an important benefit as it
allows borderline students to be identified, that is, students who are clearly not very
strong or very weak, for example students with a classification probability between
0.35 and, say, 0.65. For example, using the attributes described in Predictor Set 1, a

Table 4. Percentage of students correctly classified as weak or strong, as well as overall classification
accuracy achieved by the logistic regression models

Weak students Strong students Overall correctly
Model correctly classified correctly classified classified
Predictor Set 1 87% 69% 80%
Predictor Set 2 .82% .81% .82%

Predictor Set 3 .96% .93% .95%

Downloaded by [University College Dublin] at 03:45 11 September 2015

Predicting Introductory Programming Performance 317

classification model can be derived using all 102 students as training data (for
illustration purposes it is simpler to consider a single training set than 10-fold cross
validation). Twenty students are misclassified. However, analysis of the classification
probabilities indicates that ten of the misclassified students have a classification
probability between 0.35 and 0.65 and thus form a borderline group of students.
Assuming the objective is to assist weaker students, students in this borderline group
should also be monitored. Of the remaining ten students, three are classified as strong
but are actually weak and seven are classified as weak who are actually strong. If the
objective is to assist weaker students in order to improve retention, it could be argued
that the only significant error is the three students classified as strong who are weak.

4.2. Investigation 2

This investigation considered the complete set of attributes examined in the study. A
significant predictor set emerged (Predictor Set 3) but one needs to be cautious
interpreting the results due to the reduced sample size and the differences noted
earlier between the sample group and population at Institute A and Institute C. The
predictor set included LCMATHEMATICS, WHILEGAMES, LIKELYHOURS
and the self-efficacy for learning and performance scale from the MSLQ
(MSLQSELFEFF). Ninety-five percent of students (n=58) were classified correctly
and the model had high performance measures, as outlined in Table 4.

5. Discussion

In this section, a review of the instruments used in this study is provided and a
discussion on the models developed is presented.

5.1. Review of the Instruments

While our Programming Self-esteem scale proved useful in our classification model,
the other two comfort-level measures, the Cantwell-Wilson and Shrock (2001)
comfort-level questions and the shortened Computer Programming Self-efficacy scale
did not add any further value to the models. The Cantwell-Wilson and Shrock (2001)
comfort-level questions, however, resulted in a slightly poorer classification model
when used with LC mathematics and game playing (omitting PROGSELFEST). This
suggests that it is measuring the same phenomena as Programming Self-esteem.
However, the Programming Self-esteem scale is a superior measure. Given that we are
trying to capture attributes at a very early stage in the programming course, only seven
questions asking students to judge their ability at specific programming tasks, from the
Computer Programming Self-efficacy scale, could be administered. Clearly, this
shortened version is not sufficient to capture self-efficacy.

Analysis of the SRL measures using independent t-tests revealed that weaker
students had lower intrinsic motivation than stronger students (z(77)= —3.298,
p»=0.001). In addition, weaker students used less meta-cognitive strategies

Downloaded by [University College Dublin] at 03:45 11 September 2015

318 8. Bergin and R. Reilly

(specifically, planning, monitoring and regulating) than stronger students
(2(79) = —4.566, p=0.001). While, use of meta-cognitive strategies and intrinsic
motivation level do not increase the accuracy of the models (perhaps because the
information they provide is already captured in the model), this information is useful
to educators who are seeking to help students learn programming.

Many of the items in the background survey did not prove useful in the
development of the prediction models. These items included, prior programming
experience, encouragement from others to study programming, preference to work
alone or in a group when solving problems and number of hours using application
software, emailing or surfing the web before and during the early stages of the course.
Previous studies have reported conflicting results on prior programming experience.
However, in the Republic of Ireland students do not study programming in secondary
school at examination level and this may account for why it is not an indicator of
performance in this study. Our findings on encouragement from others to study
programming, preference to work alone or in a group when solving problems and
number of hours using application software, emailing or surfing the web before and
during the early stages of the course are in line with a longitudinal study carried out
by Cantwell-Wilson and Shrock (2001).

5.2. Analysis of Predictor Set 1

The fact that L.C mathematics is a useful predictor is of no great surprise given our
literature review in Section 2. The Programming Self-esteem measure had never been
used before, but it can be thought of as another measure of comfort level. Considered
as such, the findings on its predictiveness are in line with previous research. The
importance of computer game playing as a predictor of performance supports the
results of Cantwell-Wilson and Shrock (2001) and Evans and Simkin (1989), who
similarly found a negative relationship between game playing and programming
performance.

Predictor Set 1 considers the largest number of students (z=102). When a
separate logistic regression model is developed for each institution, prediction
accuracy remains high, with accuracies of 85% at Institute A, 96% at Institute B, 92%
at Institute C and 71% at Institute D, respectively. The lower result at Institute D can
be accounted for by the fact that only 44% students were included in the classification
due to a large amount of missing data. In most cases, LC mathematics score was
missing. A large proportion of the students at this college had obtained their second-
level education abroad and consequently did not sit the LC mathematics
examination. This is a problem for the current model. Although several substitution
schemes were examined, none were found suitable. We intend to examine other
substitution schemes to alleviate this problem and to investigate alternative
classification techniques for handling missing data better.

The order of importance of the three variables changes at the different institutions,
as illustrated in Table 5. It is interesting that the exact same ordering of predictors is
found at both Institute B and C. Both of these institutes have similar admission

Downloaded by [University College Dublin] at 03:45 11 September 2015

Predicting Introductory Programming Performance 319

Table 5. Order of importance for attributes

Institute A Institute B Institute C Institute D
1st PROGSELFEST WHILEGAMES WHILEGAMES WHILEGAMES
2nd LCMATHEMATICS LCMATHEMATICS LCMATHEMATICS PROGSELFEST
3rd WHILEGAMES PROGSELFEST PROGSELFEST LCMATHEMATICS

requirements and are the same type of institute (institutes of technology). As such,
students with similar academic backgrounds would attend each college and the model
appears to adjust accordingly for this. Institute A is a university and, in general, would
have a higher admissions requirement. Computer game playing at this institution is
the least important predictor as opposed to the most important at the others. It could
be interpreted that students at Institute A who, in general, would have higher entry
results, work harder and are less likely to play games. However a one-way ANOVA
test failed to reveal any statistical differences between computer game playing at
each of the institutions. An ANOVA test revealed a statistical difference between
the mean LC mathematics score at Institute A and each of the other institutes
(F(3,98) =24.985, p<0.001). There was no difference in the mean score at institutes
B, C and D. This could partially explain why LC mathematics is a more important
factor at Institute A. No statistical differences were found between the programming
self-esteem scores at the different institutions.

5.3. Predictor Set 2

Predictor Set 2 includes the likely number of hours a student will spend studying for
the module. The inclusion of this attribute results in an improvement in the number
of students classified as strong (from 69% to 81%), but with a slight decrease in the
prediction performance of weak students (from 87% to 82%). An ANOVA test failed
to reveal any significant differences between the likely hours studied by weak and
strong students. It appears that knowing the number of hours a strong student will
spend studying helps to classify strong students but the same is not true of weak
students. This may be caused by weak students overestimating the number of hours
they will spend studying, however further investigation is warranted.

5.4. Predictor Set 3

The measures of self-regulated learning were disappointing. The only measure that
added to the classification model was the MSLQ self-efficacy scale. This is not
surprising given the findings on the importance of self-efficacy in other studies. When
this measure is included in the model, the Programming Self-esteem measure does
not contribute any significant additional value. To determine whether the MSLQ
self-efficacy scale was a superior measure than the Programming Self-esteem scale,

Downloaded by [University College Dublin] at 03:45 11 September 2015

320 8. Bergin and R. Reilly

albeit with a considerably reduced sample size, n =58, a further logistic regression
model was developed. The model used the same student sample as the model
developed using Predictor Set 3 (n=58) but used the Programming Self-esteem
measure instead of the MSLQ self-efficacy scale along with LCMATHEMATICS,
WHILEGAMES, and LIKELYHOURS. The model resulted in poorer prediction
accuracy with 88% of the students classified correctly. Given the problems of sample
representativeness in this study, it is not possible to determine if the MSLQ self-
efficacy scale measure is a truly superior measure than the Programming Self-esteem
scale, however future studies should endeavour to verify this finding.

Further analysis on the SRL measures using independent t-tests revealed that
weaker students had lower intrinsic motivation than stronger students. In addition,
weaker students used fewer meta-cognitive strategies (specifically, planning,
monitoring and regulating) than stronger students. This is in line with previous
findings on SRL and programming performance, as outlined in Bergin and Reilly
(2005¢).

6. Epilogue

In the academic year 2005 — 2006 students enrolled on the introductory programming
module at Institute A were asked to participate in an additional study to verify the
effectiveness of the three factors and also to verify the suitability of logistic regression
for predicting programming performance. Students were asked to answer ques-
tions based on the three factors identified in Predictor Set 1, that is their LC mathe-
matics result, the number of hours spent playing computer games and the
Programming Self-esteem scale. Twenty-one of the 22 students (95%) who com-
pleted the module participated in the study. The study was carried out when the
students had completed three weeks of Java programming (variable types, selection
statements and iteration).

The full set of students who participated in the main study outlined in this paper
with no missing data, (z=102), were used as training instances to develop a final
logistic regression model. The model achieved an overall prediction accuracy of 81%
(4 students were misclassified). The number of students correctly classified as weak
was 80% (2 students misclassified) and the number of students correctly classified as
strong was 82% (2 students misclassified). With regards to the two students who were
predicted to be ‘strong’ programmers but were actually ‘weak’, the first student
achieved an overall result of 54.97% and the cut-off value for weak was 55.5%. That
is, had the student achieved 0.6% more they would have been correctly classified,
increasing the overall accuracy measure to 86% and the sensitivity measure to 90%.
The second student who was misclassified as ‘strong’ did not attend any lab or
workshop sessions and attended less than 5% of the lectures in the second semester.
Prior to their non-attendance the student had performed well in their class and lab
exams.

This study further confirms the effectiveness of a logistic regression model using
the three identified factors for predicting programming performance.

Downloaded by [University College Dublin] at 03:45 11 September 2015

Predicting Introductory Programming Performance 321

6.1. Conclusions

The work outlined in this paper makes four main contributions to the field. First,
the research is based on a new study on identifying factors that influence success
on introductory programming modules. Over 25 factors were examined at four
different institutions. The study provided further evidence on the importance of
mathematics, comfort level and game playing as predictors of programming
performance. The study also examined numerous other factors and found that
they failed to contribute further to the prediction model, for example prior
programming experience, number of hours a student spends working at a part-
time job, encouragement from others to study programming, preference to work
alone or in a group when solving problems and number of hours using application
software, emailing or surfing the web before and during the early stages of the
course. Second, the study introduced the use of a new instrument, (the
Programming Self-esteem scale), and found that it outperforms the Cantwell-
Wilson and Shrock (2001) comfort-level questions and the shortened Computer-
programming Self-efficacy scale as a measure for predicting programming
performance. Third, an investigation on the usefulness of SRL for predicting
performance was carried out. While, SRL was not found to contribute further to
the model, except for the self-efficacy measure, its role in learning to program was
identified and justifies further research in the area. Finally, the classification model
outlined in investigation 1 and the subsequent analysis using classification
probability is arguably one of the most successful prediction models to date. The
use of 10-fold stratified cross-validation further confirms the generalizability of the
findings.

Future work should seek to validate the second model. The MSLQ self-efficacy
scale should be administered along side the other measures to see if it is useful when
administered in the very early stages of the module. If it is found to be useful, then
incorporating the measure with the number of hours a student is likely to study, their
LC mathematics score, and the number of hours playing games could result in an
even more effective model.

A future study examining the effectiveness of the three-factor model at predicting
performance in other computer science topics, for example, discrete mathematics
would be useful. The only modification required to the instruments would be to re-
word the programming self-esteem measure to represent the new topic. Where
students study computer science as part of a science or arts degree, it would also be
useful to determine how well the model predicts performance on the associated
science or arts modules.

With regards to the LC mathematics score, studies need to be carried out in
other countries to see if performance on other mathematics tests can be used in
the model instead. The development of a mathematical test that captures the
aspects of mathematics that are most important in learning to program would be
very useful rather than relying on responses on a test that all students may not
have taken.

Downloaded by [University College Dublin] at 03:45 11 September 2015

322 8. Bergin and R. Reilly

Acknowledgements

The authors express their gratitude to the Higher Education Authority (HEA) for
partially funding this work. We also sincerely thank the students who participated and
the staff who facilitated this study, in particular, Karel de Raeymaeker, Margaret
Kinsella and Enda Dunican.

References

Austin, H.S. (1987). Predictors of Pascal programming achievement for community college
students. ACM SIGCSE Bulletin, 19(1), 161 —164.

Barker, R.J., & Unger, E.A. (1983). A predictor for success in an introductory programming class
based upon abstract reasoning development. ACM SIGCSE Bulletin, 15(1), 154—158.

Bergin, S., & Reilly, R. (2005a). Programming: factors that influence success. ACM SIGCSE
Bulletin, 37(1), 411-415.

Bergin, S., & Reilly, R. (2005b). The influence of motivation and comfort-level on learning to
program. Proceedings of the 17th Workshop on Psychology of Programming, PPIG ’05, 293 —304.

Bergin, S., & Reilly, R. (2005c¢). Examining the role of self-regulated learning on introductory
programming performance. Proceedings of the 2005 international Workshop on Computing
Education Research, ICER 2005, 81 —-86.

Bergin, S., & Reilly, R. (2006). Statistical and machine learning models to predict programming
performance. PhD thesis.

Byrne, P., & Lyons, G. (2001). The effect of student attributes on success in programming. ACM
SIGCSE Bulleting, 33(3), 49—52.

Cantwell Wilson, B., & Shrock, S. (2001). Contributing to success in an introductory computer
science course: a study of twelve factors. ACM SIGCSE Bulletin 33(1), 184—188.

Evans, G.E., & Simkin, M.G. (1989). What best predicts computer proficiency? Communications of
the ACM, 32(11), 1322-1327.

Gibbs, D.C. (2000), The effect of a constructivist learning environment for field-dependent/
independent students on achievement in introductory computer programming. ACM SIGCSE
Bulletin, 32(1), 207—-211.

Goold, A., & Rimmer R. (2000). Factors affecting performance in first-year computing. ACM
SIGCSE Bulletin, 32(2), 39—43.

Hagan, D., & Markham, S. (2000). Does it help to have some programming experience before
beginning a computing degree program? ACM SIGCSE Bulletin, 32(3), 25—28.

Honour-Werth, L. (1986). Predicting student performance in a beginning computer science class.
ACM SIGCSE Bulletin, 18(1), 138—143.

Holden E., & Weeden, E. (2004). The impact of prior experience in an information technology
programming course sequence. Proceedings of the 4th Conference on Information Technology
Curriculum, CITC4 °03, 41 —46.

Hostetler, T.R. (1983). Predicting student success in an introductory programming course. ACM
SIGCSE Bulletin, 15(3), 40—43.

Konvalina, J., Wileman, S.A., & Stephens, L..G. (1983). Math proficiency: a key to success for
computer science students. Communications of the ACM, 26(5), 377 —-382.

Kurtz, B.L. (1980). Investigating the relationship between the development of abstract reasoning and
performance in an introductory programming class. ACM SIGCSE Bulletin, 12(1), 110—117.

Leeper, R.R., & Silver, J.L.. (1982). Predicting the success in a first programming course. ACM
SIGCSE Bulletin, 14(1), 147-150.

Mayer, R.E., Dyck, J.L., & Vilberg, W. (1986). Learning to program and learning to think: what’s
the connection? Communications of the ACM, 29(7), 605-610.

Downloaded by [University College Dublin] at 03:45 11 September 2015

Predicting Introductory Programming Performance 323

Newsted, P.R. (1975) Grade and ability predictions in an introductory programming course. ACM
SIGCSE Bulletin, 7(2), 87—91.

Pajares, F., Brinter, S., & Valiante, G.(2000). Relation between achievement goals and self-beliefs
of middle school students in writing and science. Contemporary Educational Psychology, 25(4),
406-422.

Pintrich, P., & DeGroot, E. (1990). Motivational and self-regulated learning components of
classroom academic performance. Fournal of Educational Psychology, 82(1), 33 —40.

Pintrich, P., & Garcia, T. (1991a). Student goal orientation and self-regulation in the college
classroom. Advances in Motivation and Achievement, 7, 371 —403.

Pintrich, P., Smith, D., Garcia, T., & McKeachie, W. (1991b). A manual for the use of the
motivated strategies for learning questionnaire. Technical Report 91-B-004. The Regents of
the University of Michigan.

Pintrich, P. (1999). The role of motivation in promoting and sustaining self-regulated learning.
International Fournal of Educational Research, 31, 459—470.

Pokay, P., & Blumenfeld, P. (1990). Predicting achievement early and late in the semester: the role
of motivation and learning strategies. Fournal of Educational Psychology, 82(1), 41-50.

Ramalingham, V., & Wiedenbeck, S. (1998). Development and validation of scores on a computer
programming self-efficacy scale and group analyses of novice programmer self-efficacy. Fournal
of Educational Computing Research, 19(4), 367 —381.

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-efficacy and mental models in
learning to program. ACM SIGCSE Bulletin, 36(3), 171-175.

Rosenberg, M. (1965). Sociery and the adolescent self image. Princeton, NJ: Princeton University
Press.

Rountree, N., Rountree, J., & Robins, A. (2002). Predictors of success and failure in a CS1 course.
ACM SIGCSE Bulletin, 34(4), 121 —-124.

Stein, M.V. (2002) Mathematical preparation as a basis for success in CS-II. Journal of Computing in
Small Colleges, 17(4), 28—38.

Ventura, P.R. (2005). Identifying predictors of success for an objects-first CS1. Computer Science
Educarion, 15(3), 223 —-243.

Wiedenbeck, S. (2005). Factors affecting the success of non-majors in learning to program.
Proceedings of the 2005 International Workshop on Compuring Education Research, ICER 2005,
13-24.

Zimmerman, B. (1986). Becoming a self-regulated learner: which are the key sub-processes?
Contemporary Educational Psychology, 11(4), 307—-313.

Zimmerman, B., & Martinez-Pons, M. (1990). Student differences in self-regulated learning:
relating grade, sex and giftedness to self-efficacy and strategy use. Fournal of Educational
Psychology, 82(1), 51-59.

